UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2009 10

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER : P442

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY <u>FOUR</u> OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS **SIX** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

(i) For ${}^{16}_{7}N$ (atomic mass=16.0061(u)) and ${}^{16}_{8}O$ (atomic mass=15.994915(u)) compute the total binding energy and the binding energy per nucleon. [2]

(ii) Compute neutron and proton separation energies for ${}^{16}_{7}N$.

[3]

Given: Atomic mass of ${}_{6}^{15}C = 15.0105993(u)$ and ${}_{7}^{15}N = 15.000109(u)$.

(iii) Define radius of the nuclei. Explain the difference between nuclear matter radius and nuclear charge radius.

[2]

[4]

(iv) For a nucleus of radius R and charge Ze, electrostatic energy is given by $\frac{3Z(Z-1)e^2}{20\pi\varepsilon_0R}$

if we assume the charges to be discrete. Using this for a mirror nuclei, the Coulomb energy difference is given by

$$\left| \Delta E \right| = \frac{6Z \, e^2}{20 \pi \varepsilon_o \, R}$$

where Z refers to the nuclei of lower charge.

Use this formula to estimate electrostatic radius R in the case of $^{15}_{7}N$ (atomic mass= 15.000109(u))and ${}^{15}_{8}O$ (atomic mass=15.0105993(u)).

- (B) Describe the principle involved in radioactive dating of rocks and organic specimens. [4]
 - (i) The radioactive decay of $^{232}_{90}Th$ (with half life 1.4 x 10^{10} yrs)leads eventually [5] to stable $^{208}_{82}Pb$. A rock is determined to contain 3.65 gm of $^{232}_{90}Th$ and 0.75 gm

What is the age of the rock?

(ii) A living organisms has a constant activity due to ${}^{14}_{6}C$ decay of **0.23 Bq** for [5] each gram of carbon. In 1991 a German tourist found an iceman in the Italian Alps who had become trapped in a glacier. One gram of the material found with the body was found to have an activity of about **0.121 Bq** due to the decay of ${}^{14}_{6}C$. What is the age of the iceman?

Q.2.

- **(A)**(i) Define Q value for β^- , β^+ and electron capture. [3]
 - (ii) Can beta decay distinguish matter and anti-matter? Explain your answer. [2]
 - (iii) Explain why two types of selection rules (the Fermi and GT) exist in β -decay. [2]
 - (iv) In β^+ decay, positron emission is always accompanied by electron capture process [2] and Auger electrons. Explain.
- (B) Consider the following fusion reaction

$$p + p \rightarrow d + e^+ + v_e$$

Assume the involved protons have negligible kinetic energy.

- Define Q-value in the reaction. (i) [2]
- Ī2Ī (ii) Compute the range of neutrino energies (minimum and maximum).

Note: Mass of proton=938.272 MeV, Mass of deuteron =1875.611 MeV Mass of $e^+ = 0.511$ MeV. Mass of neutrino $v_e = 0$ (negligible).

- (C) Classify the following decays according to the degree of forbidden ness
 - (i) $_{17}^{36}Cl(2^+) \rightarrow _{18}^{36}Ar(3^+)$ [2]
 - (ii) $_{40}^{97}Zr(1/2^{+}) \rightarrow _{41}^{97}Nb(1/2^{-})$ [2]
- (D) Write brief notes on any **two** of the following: [8]
 - (i) Scintillation detector. Explain why NaI crystal is doped with Tl.(ii) Fission and Fusion.
 - (iii) Cyclotron and Synchrotron.
- **Q.3.** Semi-empirical mass formula for nuclear mass m(Z,A) is given by

$$m(Z,A) = Zm_p + (A-Z)m_n - a_v A + a_s A^{\frac{2}{3}} + a_c Z^2 A^{-\frac{1}{3}} + a_a \frac{(A-2Z)^2}{A} + \delta A^{-\frac{1}{2}}$$

with $a_v=15.56\;\text{MeV}$, $a_s=17.23\;\text{MeV}$, $a_c=0.697\;\text{MeV}$, $a_a=23.20\;\text{MeV},$ and

- δ = 11.2 MeV for odd-odd
 - = 0 for odd-even or even-odd.
 - = -11.2 MeV for even -even
- (i) Explain the origin of various terms in the given semi-empirical mass formula. [6]
- (ii) Define the Q-value for symmetric fission of a nuclei of mass m(Z,A). [2] Show that possibility of the spontaneous symmetric fission depends on parameters a_s and a_c only. Neglect the contribution from pairing energy term. [8]
- (iii) Define Q value for α -particle emission in terms of mass m(Z,A) of parent [1] nucleus and m(Z-2,A-4) of daughter nucleus.
 - (a) What is the relation between separation energy for α -particle and Q-value. [2]
 - (b) What is the relation between Q value and total kinetic energy involved in the α -decay. [1]
 - (c) Use the semi-empirical mass formula to derive an expression for the Q-value for α-particle emission. Neglect the contribution from pairing energy term. [5]
- Q.4. (A) (i) What do you understand by the term "Magic Numbers"? [2]
- (ii) State the basic assumptions made in the single particle shell model. [4]
- (iii) Explain how the spin and parities are determined using the single particle [4] shell model for even-even, odd-even, even-odd and odd-odd nuclei.
- (iv) Determine the spin and parities for the ground state of the following nuclei by shell model considerations.

(a)
$$_2^3He$$
 , $_{10}^{21}Ne$, $_{31}^{69}Ga$ and $_{83}^{209}Bi$. [4]

(b)
$$_{19}^{38}K$$
 , $_{31}^{66}Ga$, and $_{37}^{82}Rb$. [6]

Note: Use the shell model level scheme given in the Appendix.

(B) Describe the significant processes through which the γ -rays in the energy range less than 1.0 MeV primarily interact with matter and its implication on the absorption of radiation in materials.

Q.5. (A) $^{241}_{95}Am$ (5/2+) decays to series of states of $^{237}_{93}Np$ by a-decay. The ground state of $^{237}_{93}Np$ is (5/2 +) and following excited states of $^{237}_{93}Np$ are populated :

33.2(7/2+), 59.527(5/2-), 103(7/2-) and 158.6 (9/2-) keV.

(i) Construct the decay scheme.

[4]

(ii) For each state find the permitted values of $\ \ell_{a}$.

[5]

(iii) List all the possible multi-polarities of γ -transitions, indicating in each case most likely transition.

[10]

Note: Do not consider E3, M3 and higher transitions.

(B) Write short notes on:

[6]

- (a) Non-conservation of parity.
- (b) Internal Conversion

@@@END OF EXAMINATION@@@

Appendix

Selection Rules:

(A) β -decay:

Type of Transition		ΔΙ	Parity Change
Allowed	Fermi	0	No
	GT	±1 or 0	No
		$(\text{except } 0 \rightarrow 0)$	
1 st	Fermi	± 1,0	Yes
Forbidden		(except 0 → 0)	
	GT	±2, ± 1, or 0	Yes
		(except $0 \rightarrow 0$; $1/2 \rightarrow 1/2$; $0 \rightarrow 1$)	
2 nd	Fermi	± 2	No
Forbidden	GT	± 3	No

(B) γ - decay:

	E1	E2	E3	E4
Δπ	Yes	No	Yes	No
∆J ≤	1	2	3	4
	M1	M2	М3	M4
Δπ	No	Yes	No	Yes
Δ] ≤	1	2	3	4

(C) Useful Information

PHYSICAL CONSTANTS AND DERIVED QUANTITIES

Speed of light c = 2.99792458×10^8 m s⁻¹ ~ 3.00×10^{23} fm s⁻¹ Avogadro's number $N_A = 6.02214199(47) \times 10^{26}$ molecules per kg-mole Planck's constant $h = 6.626068 \ 76(52) \times 10^{-34}$ J s

$$\hbar = 1.054571 \ 596(82) \ x \ 10^{-34} \ J \ s = 0.65821 \ X \ 10^{-21} \ MeV \ s$$
 $\hbar^2 = 41.802 \ u \ MeV \ fm^2$
 $\hbar \ c = 197.327 \ MeV \ fm$

Elementary charge $e = 1.602176462(63) \times 10^{-19} \text{C}$ $e^2/4\pi\varepsilon_0 = 1.4400$ MeV fm

 $\frac{e^2}{4\pi\varepsilon_0\hbar c} = 1 / 137.036$ Fine structure constant $\alpha =$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

Curie (1 Ci = 3.7×10^{10} dis/sec), is based upon the activity of one gram of radium. Becquerel (Bq = 1 dis/sec)

USEFUL FORMULAE

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$$
 where $t_{\frac{1}{2}} = \text{half life}$, $\lambda = \text{decay constant and } \tau = \text{mean life}$.

Energy width of a state of lifetime τ :

$$\Gamma$$
= 6.58212 x 10⁻²² / τ (s) MeV

Non-relativistic speed of mass m with energy E:

$$v = 1.389 \times 10^7 [(E(MeV) / m(u))]^{1/2} \text{ ms}^{-1}$$

Non-relativistic wave number of mass m with energy E:

$$k=2\pi/\lambda=0.21874 [m(u) \times E(MeV)]^{1/2} \text{ fm}^{-1}$$

Wave number for a photon of energy E:

$$k = 2\pi/\lambda = E / \hbar c = E (\text{MeV}) / 197.327 \text{ fm}^{-1}$$

MASSES AND ENERGIES

 m_e

Atomic mass unit m_u or $u = 1.66053873(13) \times 10^{-27} \text{ kg}$

$$m_u c^2 = 931.494 \text{ MeV}$$

 $= 9.10938188(72) \times 10^{-31} \text{ kg}$ Electron

> $= 5.486 \times 10^{-4} = 1/1823$ m_e/m_u $m_e c^2$ = 0.510998902(21) MeV

 $= 1.67262158(13) \times 10^{-27} \text{ kg}$ Proton m_{p}

> = 1.00727647 m_p / m_u $m_p c^2$ = 938.272 MeV

 $= 1.673533 \times 10^{-27} \text{ kg}$ Hydrogen atom

> = 1.007825 $m_{\rm H}/m_u$ $m_H c^2$ = 938.783 MeV

 $= 1.67492716(13) \times 10^{-27} \text{ kg}$ Neutron

> m_n/m_u = 1.00866491578(55) $m_n c^2$ = 939.565 MeV

 $= 6.644656 \times 10^{-27} \text{ kg}$ Alpha particle m_{α}

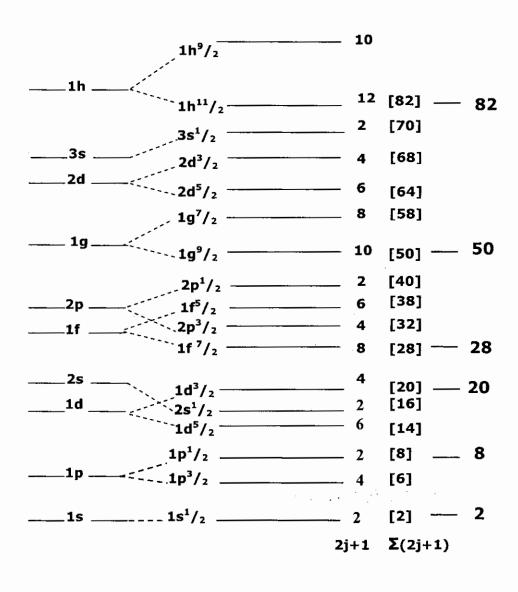
> = 4.001506175 m_{α}/m_{u} $m_{\alpha} c^{2}$ = 3727.379 MeV

CONVERSION FACTORS

Fermi
$$1 \text{fm} = 10^{-15} \text{ m}$$

1 eV=1.6022 x 10⁻⁹ J

Million electron volts
$$1 \text{ MeV} = 1.602176 \times 10^{-13} \text{ J}$$


$$1 \text{ MeV/c}^2 = 1.783 \times 10^{-30} \text{ kg}$$

Cross section (barn)
$$1 \text{ b} = 10^{-28} \text{ m}^2$$

Year 1 y =
$$3.1536 \times 10^7 \text{ s}$$

(D) Single particle shell model Level Scheme:

Following diagram gives the energy levels calculated using a realistic potential with spin-orbit interaction according to single particle shell model:

