UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION

2009/2010

TITLE OF PAPER:

DIGITAL ELECTRONICS

COURSE NUMBER:

P411

TIME ALLOWED:

3 HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF SIX QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRACKETS.

THIS PAPER HAS 9 PAGES INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1 (a) (i)	i) Convert 25.625 ₁₀ to its binary equivalent.					
(ii)	Convert the number 101.101 ₂ to its decimal equivalent.					
(b) (i)	(b) (i) Find the equivalent decimal value for the BCD coded number: 0001010001110101.					
(ii)	Convert the hexadecimal number F8E6 to the corresponding decimal number.	[3]				
(c) (i)	Add (AECF1) ₁₆ and (15ACD) ₁₆ .	[3]				
(ii)	Subtract (3A7) ₁₆ from (1274) ₁₆ .	[3]				
(d) (i)	Give two drawbacks of dealing with negative numbers in digital computers using the signed magnitude method.	[3]				
(ii)	Using the 2's complement, subtract 1010_2 from 1101_2 and check your result using the decimal equivalents of these numbers.	t [4]				
` '	2 (a) Derive the truth tables for the action of the circuits in figures 1 and 2 of the Appendix A and hence state the logic functions that they perform. [6]					
` ' '	plain the action of the circuit in figure 3 of the Appendix A and derive its trut le. What kind of gate is it?	th [4]				
٠,	(c) Use only AND, OR and NOT gates to construct a logic circuit that carries out the					
10	llowing logic function: $F = \overline{(ABC + \overline{B})} + BC.$	[4]				
	onvert the following logical expression into canonical Product of Sums					
(maxterms) form: $F = (A + B)(A + C)(B + C).$						
(e) Us	e a Karnaugh map to simplify the following logic expression:					
	$F = \vec{A}\vec{B}\vec{C} + \vec{A}B + AB\vec{C} + AC.$	[4]				
• •	at logic function is performed by the interconnected NAND gates in figure 4 a Appendix A . You are not required to simplify the function.	of [3]				
(b) Def	ine the following terms:					
(i)	Fan in and fan out;	[2]				
(ii)	Current hogging in DCTL logic;	[2]				
		2				

(iii) Race hazard, with an example.

- [2]
- (c) Draw a well labeled logic circuit of a two-NAND gate RS flip flop (or a bistable multivibrator) and explain the way it functions as a memory element. [6]
- (d) Figure 5 in the Appendix A is a logic diagram of a clocked four-NAND gate SR flip flop. Study it and answer the questions that follow:
 - (i) Why is the flip flop clocked?

[2]

- (ii) Explain how the S and R inputs are transmitted through the first and second pairs of NAND gates to give the Q AND \bar{Q} outputs. [4]
- (iii) What is the memory capacity of this flip flop?

[2]

(iv) What is the major disadvantage of this flip flop?

[2]

- 4 (a) Explain what is meant by 'level triggering', 'negative-edge triggering' and 'leading edge triggering' of a flip flop. [3]
 - (b) Figure 6 in the Appendix A is a logic diagram of a clocked D-type flip flop. Answer the following questions with reference to that figure:
 - (i) What is the advantage of having a single input to the latch?

[1]

(ii) What is the function of the gate labeled N5?

[1]

(iii) Complete the following table for the various signals applied to the inputs.[4]

Input					the	Outputs a	fter the clock
			clock p	clock pulse		pulse	
D	S	R	Q	Q		Q	Q
0	0	1	1	0			
0	0	1	0	1			
1	1	0	1	0			
1	1	0	0	1			

(c) Figure 7 in the Appendix A is a logic diagram of a JK flip flop. State the behavior of the flip flop when the J and K inputs assume the following values at the triggering of the clock:

(i)
$$J = K = 1$$
; [2]

(ii) J=1 and K=0;

[2]

(iv)	J=0 and $K=0$.	[2]
(d) (i)	Explain how the modulus of a counter is determined, using an example.	[2]
(ii)	Figure 8 in the Appendix A represents a mod-8 counter. Verify counter's performance by way of a timed waveform diagram of the out Q0, Q1 and Q2. Show, clearly, the triggering points and counting seque on your diagram.	puts
5 (a) Mi	nimize the Boolean expression for the four variable logic function	
F	$C(A,B,C,D) = \sum m(0,2,6,8,9)$	
us	ing a Karnaugh map.	[6]
` '	ake the truth table for a full adder and develop its logic circuit using a 3 to oder.	8 [6]
	ke a truth table for a 4 to 3 priority encoder. State the order of priority of outs.	the [6]
` '	sign a 2 to 1 multiplexer (2:1 mux) by first minimizing its Boolean erational function using a Karnaugh map of its truth table.	[7]
. ,	tinguish between a microprocessor and a microcontroller, giving an exampeach.	ple [4]
(b) Bri	efly explain the functions of the following parts of a microprocessor unit:	
(i)	Accumulator (ACC);	[2]
(ii) Data register (DR);	[2]
(ii	i) Flag register (FR);	[2]
(iv	Address register (AR);	[2]
(v	Arithmetic logic unit (ALU);	[2]
(v	i) Program counter (PC);	[1]
(v	ii) Instruction decoder.	[1]

J = 0 and K = 1;

(iii)

[2]

(c) Explain the following modes of addressing in assembly language: Inherent or implied addressing; [2] (ii) Immediate addressing; [2] (iii) Indirect addressing. [2] (d) Using Appendix B to convert your mnemonics into opcodes in Hex, write an assembly language program to perform the following operations: Load 93H into the accumulator A; (i) [0.5](ii) Load B7H into register C; [0.5][0.5](iii) Add both contents; Add the number 35H directly to the sum; [0.5](iv) Save the sum in register D; [0.5] (v) [0.5](vi) End the program.

APPENDIX A - DIAGRAMS

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6

Figure 7

Figure 8

APPENDIX B – 8085 MNEMONICS

JUMP	CALL	RETURN	MOVE	
СЗ ЈМР	CD CALL	C9 RET	40 MOV B,B	60 MOV H,B
C2 JNZ	C4 CNZ	C0 RNZ	41 MOV B,C	61 MOV H,C
CA JZ	CC CZ	C8 RZ	42 MOV B,D	62 MOV H,D
D2 JNC	D4 CNC	DO RNC	43 MOV B,E	63 MOV H,E
DA JC	DC CC	D8 RC	44 MOV B,H	64 MOV H,H
E2 JPO	E4 CPO	E0 RPO	45 MOV B,L	65 MOV H,L
EA JPE	EC CPE	E8 RPE	46 MOV B,M	66 MOV H,M
F2 JP	F4 CP	FO RP	47 MOV B,A	67 MOV H,H
FA JM	FC CM	F8 RM		
E9 PCHL			48 MOV C,B	68 MOV L,B
			49 MOV C,C	69 MOV L,C
MOVE	Acc	LOAD	4A MOV C,D	6A MOV L,D
IMMEDIATE	IMMEDIATE	IMMEDIATE	4B MOV C,E	6B MOV L,E
			4C MOV C,H	6C MOV L,H
06 MVI B	C6 ADI	01 LXI B,	4D MOV C,L	6D MOV L,L
OE MVI C,	CE ACI	11 LXI D,	4E MOV C,M	6E MOV L,M
16 MVI D,	D6 SUI	21 LXI H,	4F MOV C,A	6F MOV L,A
IE MVI E,	DE SBI	31 LXI SP,		
26 MVI H,	E6 ANI		to MOTED D	70 160W 16D
2E MVI L,	EE XRI	DOIDIE ADD	50 MOV D,B	70 MOV M,B
36 MVI M,	F6 ORI	DOUBLE ADD	51 MOV D,C	71 MOV M,C
3E MVI A,	FE CPI	09 DAD B	52 MOV D.D	72 MOV M.D
		09 DAD B 19 DAD D	53 MOV D,E 54 MOV D,H	73 MOV M,E
INCREMENT	DECREMENT	29 DAD H	55 MOV D,L	74 MOV M,H 75 MOV M,L
INCREMENT	DECREWENT	39 DAD SP	56 MOV D,M	75 MOV M,L
04 INR B	05 DCR B	39 DAD BE	57 MOV D,A	77 MOV M,A
OC INR C	OD DCR C		37 140 V D,14	// 1410 V 141,/A
14 INR D	15 DCR D	LOAD/STORE	58 MOV E,B	78 MOV A,B
IC INR E	ID DCR E	Bornstord	59 MOV E,C	79 MOV A,C
24 INR H	25 DCR H	OA LDAX B	5A MOV E,D	7A MOV A,D
2C INR L	2D DCR L	1A LDAX D	5B MOV E,E	7B MOV A,E
34 INR M	35 DCR M	2A LHLD	5C MOV E,H	7C MOV A,H
3C INR A	3D DCR A	3A LDA	5D MOV E,L	7D MOV A,L
			5E MOV E,M	7E MOV A,M
03 INX B	0B DCX B	02 STAX B	5F MOV E,A	7F MOV A,A
13 INX D	1B DCX D	12 STAX D		
23 INX H	2B DCX H	22 SHLD	ACCUMULATOR	
33 INX SP	3B DCX SP	32 STA		
			80 ADD B	A0 ANA B
			81 ADD C	A1 ANA C
RESTART	ROTATE	SPECIALS	82 ADD D	A2 ANA D
G# 70 G# 0	27.0		83 ADD E	A3 ANA E
C7 RST 0	07 RLC	EB XCHG	84 ADD H	A4 ANA H
CF RST 1	OF RRC	27 DAA	85 ADD L	A5 ANA L
D7 RST 2	17 RAL	2F CMA	86 ADD M	A6 ANA M
DF RST 3	if RAR	37 STC	87 ADD A	A7 ANA A
E7 RST 4		3F CMC		

EF	RST 5	CONTROL		88 ADC B	A8 XRA B
F7	RST 6		INPUT/OUTPUT	89 ADC C	A9 XRA C
FF	RST 7	00 NOP		8A ADC D	AA XRA D
		20 RIM	D3 OUT	8B ADC E	AB XRA E
		30 SIM	DB IN	8C ADC H	AC XRA H
		76 HLT		8D ADC L	AD XRA L
		F3 DI	STACK OPS	8E ADC M	ae xra m
		FB EI		8F ADC A	AF XRA A
			C5 PUSH B		
			D5 PUSH D	90 SUB B	BO ORA B
			E5 PUSH H	91 SUB C	BI ORA C
			F3 PUSH PSW	92 SUB D	B2 ORA D
				93 SUB E	B3 ORA E
			C1 POP B	94 SUB H	B4 ORA H
			D1 POP D	95 SUB L	B5 ORA L
			E1 POP H	96 SUB M	B6 ORA M
			F1 POP PSW	97 SUB A	B7 ORA A
			E3 XTHL	98 SBB B	B8 CMP B
			F9 SPHL	99 SBB C	B9 CMP C
				9A SBB D	BA CMP D
				9B SBB E	BB CMP E
				9C SBB H	BC CMP H
				9D SBB L	BD CMP L
				9E SBB M	BE CMP M
				9F SBB A	BF CMP A

END OF P411 EXAMINATION