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Q.1. (a) What is the de-Broglie wavelength of neutron with a kinetic energy
of 1.7 MeV? Will such neutrons produce a diffraction pattern in a crystal of
lattice point distances of the order of 107 m? [3]

(b) Using the uncertainty relation, show that in a nucleus with average
potential energy <U> > 15 Meyv, the bound nucleon is confined within a
sphere of radius rp > 1.2 x 107 m. [2]
(c) Explain (6]

(i) Superposition principle and its importance in quantum mechanics,

(if) Why it is necessary to have only linear operators associated with a
dynamical variable.

(iii) Probability interpretation of wave function and its implications.
(d) Consider the step potential

V(X) = Vp x>0
=0 x<0

W
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0 X—>

Consider a current of particles of mass m propagating from left to right of
energy E > Vp.

petine k- ZE ,  g,- [PETD

The general solutions for the regions 1 ( x<0) and 2(x >0) are

¢1(X)=A1efk1x+81e~ik,x , ¢2(X)=Azeik2x+sze—1k2x
(i) State the boundary conditions on the solutions. [2]
. B, k -k A 2k
i) Show that —t=-1 2 and —2=-""1_ 10
() A Ktk Ak tk, [10]
(i) What is the interpretation of % and —32— ? (2]
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Q.2. (a) Explain the following:
(i) What is the difference between a state of the system given by the [2]

ket (/ m) and the wave function ¢,,(r,%,¢) describing the same state.

(ii) A dynamical quantity is always represented by a Hermitian linear
operator. [2]

(b) (A Hamiltonian H has two eigenfunctions y, and y, belonging to [5]

two different energies Ep and E; respectively. Show that the two eigen-
functions are orthogonal .

(ii) If the two eigenfunctions betong to the same energy, show that [3]
they need not be orthogonal.

(c) Consider the one dimensional problem of a particle of mass min a
potential

V(x) =ow , x< 0,
=0 0< x <a,
= Vo Xza.
(i) Sketch the potential, | [1]
(ii) Find the solutions in the three regions for E < Vg, (6]
(iii) Show that the bound state energies ( E < Vjp ) are given [6]

by the equation

N2ZmE a E
tan ————— | =~
h Vo—E

Q.3. (a) Verify that the two wave-functions (4]

Vi
¢ (x)= (—) exp(—ax® /2)
i

N
4 (x) = [EJ (2a)"%  x exp(-ax?/2)

T
are eigenfunctions of the Hamiltonian

2 2
- —ET+.::2x2
2m\ dx

belonging to two different energies.

(i) Show that the two eigenfunctions are normalized. [3]
(ii) Show that ¢,(x) and ¢ (x) are orthogonal. [2]
(iii) What are the parities of the two wave functions. (2]



(iv) Determine the value of Ax=+v<x*>-<x >2 corresponding

to gy{x).

Here < > corresponds to expectation value.

(b) Determine the energies for the ground state ¢,(x,y)and the first
excited state ¢ (x,y) for the Hamiltonian

hz 62 62 m(t)2 2 2
H:—z{ 5+ +2[x+y]

m| ox®  dy?
Use the result
W odu (x) mao?
- +
2m  dx? 2
Comment on the degeneracy of the states.

x*u, (x)=(n+ Y% hou (x) where n=0,1,2,...

Q.4. (a) Using the relation [ x;, p; 1 =i #6;; , wherei, j = Xx,y,zand
L=Fxp

show that

(i) [L,.x]=iy ; [L,.y]=—-ifx and [L ,z]=0

(ii) Using the above identities show that
[Lz,r2gJ=O where r* =x? +y* + 2%,

(b)Using the relations

lo,.6,]=ike, , [o,,0,]=ike, , [o,,0,]=iko,
(i) Show that [o,,6°]=0 where i=x,y,z and o’=0}+02+0;
(ii) Consider an Hamiltonian H which has the following properties
[H,0°]1=0
[ H r Gi ] =0

Explain why the dynamical variable corresponding to only one

component of the operator ojcan be a measurable smultaneously

with H and o?

(4]

(10]

(6]
[2]

(6]

(3]

(c) If A and B are two operators which commute with their commutator [8]

[A,B], prove that [A,B%]=3B? [A,B].

Q.5.

(a) The Hamiltonian of a rotating system with moment of inertia 7 is given

by the expression
1
H=-—(1+12
21( x+ y)

where [=Fxp .



(i) Show that y."(9, ¢) are eigenfunctions of H . [2]

(ii) Determine the eigen-value of H . [2]
(iii) Determine the degeneracy of the states for 1=0,1,2. [6]

(b) An electron is described by an Hamiltonian H = Hy + H; where
P €

=2m r
and H; describes the contribution from an external force.

Q

Ho has the eigenfunctions y,,,, =R, (r)Y,"(%,¢) and energy E, .

Here
n = principal quantum number=1,2,3......,
{ = orbital angular momentum quantum number= 0,1,2,3.......
m = projection of orbital angular momentum or z-component of / .

The eigen functions y,,,, have following properties:
HoWoim = En Waem
HWoim = @ ¥am
A state of the electron is described by eigenfunction ¢ =N(y .5, — V2¥ 210 )

(i) Determine the normalization constant N. [5]
(ii) Determine the expectation value of H . ' [7]
(iii) Is ¢ an eigenfunction of H ? : [3]

. * P
Note: J'Wm £,my V’nz £,y dr _5n,n2 5(,82 5m,m2

@@@@END OF EXAMINATION@@@®@

APPENDIX:

Given: h=6.62606876 x 1073?71 s,

h=1.0546 x107* Js ,

¢ = velocity of light =2.99792 x 10° m s™
k=1.3807x 1074 JK* .

lev=1.6022 x 10%°]. ,

mass of electron= 9.10938 x 10 kg.

mass of neutron/proton = 1.6749 x 100 kg ,

Useful Information:



[ ri,p;]=18 where n=(x,y,z) and pi=(p«,py,,P:).
(L, Ly] =ik L, [L,L]=ihl,, [L;,Ly]=ikh L, where L=Fxp ,

The functions Y;™ (&, ¢ ) are eigenfunctions of L? and L, operators with the property
LY (%0) =6t +1) R Y, (%,0)
LY (S.@)=mnY(3,¢)

Useful Integrals:

o«Q -] ]

a2 m ar 1= wt 3|7
Idze = = , Idzz‘?e‘” =—‘f“—3‘ , jdzz"e‘” =—.—
= a . 2V 4V

-0

% Jr iy n!
exp(—t2 Jdt =—— £2"*" exp(—at? ) dt = ——
; p(=t*)ot===, [£77" exp(-at® ) dt=——

[

with Rea > 0, n =0,1,2,..

J'tz" exp(—az‘"')dt=1‘3'5"'r;+';(2;n_1) ﬁ with Rea > 0, n=0,1,2.....
; 2" a a

jsinz(x)dx=%—%sin(2x) ,

fsin(mx)sin(nx)dx:j— sin{{m-n)x} sin{{m+n)x}
2 (m-n) (m+n)
jsin(mx)cos(nx)dx _ __'I_[cos[(m -n)x] +cos[(m+n)x]J
2 (m-n) (m+n)

=] 1
_[Hn (E)H, (&) exp(-E2)dé =x 2 2" nl é,, where H(E) are Hermite polynomials and

are real.

Jt"’ exp(-kt)dt = k= [(z) Rez>0,Rek>0.,
]

n+=n! for n=12,... and T(1)=1.

r(n+1)

e form>0 andnz0.
a

J.Xne—mu X dx -

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation with
respect to the parameter in the exponential, e.g.

2

] b b b
[dx xexp(-yx) = -—;— [dxexp(-yx) and [dx x* exp(-yx) = Ea—zj'dx exp(=yx) and soon.).
a Y a a S 4

o



