UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2009-10

TITLE OF THE PAPER: QUANTUM MECHANICS-I

COURSE NUMBER : P342

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

- > ANSWER ANY **FOUR** OUT OF **FIVE** QUESTIONS.
- > EACH QUESTION CARRIES **25** MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND
- > USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS SIX PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

- **Q.1. (a)** What is the de-Broglie wavelength of neutron with a kinetic energy of 1.7 MeV? Will such neutrons produce a diffraction pattern in a crystal of lattice point distances of the order of 10⁻⁸ m? [3]
- **(b)** Using the uncertainty relation, show that in a nucleus with average potential energy <U $> \ge 15$ MeV, the bound nucleon is confined within a sphere of radius $r_0 \ge 1.2 \times 10^{-15}$ m. [2]

- (i) Superposition principle and its importance in quantum mechanics.
- (ii) Why it is necessary to have only linear operators associated with a dynamical variable.
- (iii) Probability interpretation of wave function and its implications.
- (d) Consider the step potential

$$V(x) = V_0 \qquad x > 0$$
$$= 0 \qquad x < 0$$

Consider a current of particles of mass m propagating from left to right of energy $E > V_{\it 0}$.

Define
$$k_{\rm l}=\sqrt{\frac{2mE}{\hbar^2}}$$
 , $k_{\rm l}=\sqrt{\frac{2m(E-V_{\rm l})}{\hbar^2}}$

The general solutions for the regions 1 (x < 0) and 2(x > 0) are

$$\phi_1(x) = A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}$$
, $\phi_2(x) = A_2 e^{ik_2 x} + B_2 e^{-ik_2 x}$

(i) State the boundary conditions on the solutions.

(ii) Show that
$$\frac{B_1}{A_1} = \frac{k_1 - k_2}{k_1 + k_2}$$
 and $\frac{A_2}{A_1} = \frac{2k_1}{k_1 + k_2}$. [10]

(iii) What is the interpretation of
$$\frac{B_1}{A_1}$$
 and $\frac{A_2}{A_1}$? [2]

[2]

Q.2. (a) Explain the following:

- (i) What is the difference between a state of the system given by the ket $|\ell m\rangle$ and the wave function $\varphi_{\ell m}(r, \theta, \varphi)$ describing the same state.
- (ii) A dynamical quantity is always represented by a Hermitian linear operator.

[2]

[5]

(b) (i)A Hamiltonian H has two eigenfunctions ψ_0 and ψ_1 belonging to two different energies E_0 and E_1 respectively. Show that the two eigenfunctions are orthogonal .

~ ~

(ii) If the two eigenfunctions belong to the same energy, show that they need not be orthogonal.

[3]

(c) Consider the one dimensional problem of a particle of mass m in a potential

$$V(x) = \infty, x \le 0,$$

= 0 0 \le x \le a,
= V₀ x \ge a.

[1]

- (i) Sketch the potential,
- (ii) Find the solutions in the three regions for $E < V_0$, [6]
- (iii) Show that the bound state energies ($E < V_0$) are given by the equation

[6]

$$\tan\left(\frac{\sqrt{2mE}\,a}{\hbar}\right) = -\sqrt{\frac{E}{V_0 - E}}$$

Q.3. (a) Verify that the two wave-functions

[4]

$$\phi_0(x) = \left(\frac{a}{\pi}\right)^{\frac{1}{4}} \exp(-ax^2/2)$$

$$\phi_1(x) = \left(\frac{a}{\pi}\right)^{\frac{1}{4}} (2a)^{\frac{1}{2}} \quad x \exp(-ax^2/2)$$

are eigenfunctions of the Hamiltonian

$$H = \frac{\hbar^2}{2m} \left(-\frac{d^2}{dx^2} + a^2 x^2 \right)$$

belonging to two different energies.

(i) Show that the two eigenfunctions are normalized.

[3]

(ii) Show that $\phi_0(x)$ and $\phi_1(x)$ are orthogonal.

[2]

(iii) What are the parities of the two wave functions.

[2]

(iv) Determine the value of $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ corresponding [4] to $\phi_0(x)$.

Here < > corresponds to expectation value.

(b) Determine the energies for the ground state $\phi_0(x,y)$ and the first excited state $\phi_1(x,y)$ for the Hamiltonian [10]

$$H = -\frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] + \frac{m\omega^2}{2} \left[x^2 + y^2 \right]$$

Use the result

$$-\frac{\hbar^2}{2m}\frac{d^2u_n(x)}{dx^2} + \frac{m\omega^2}{2}x^2u_n(x) = (n+\frac{1}{2})\hbar\omega u_n(x) \text{ where } n=0,1,2,...$$

Comment on the degeneracy of the states.

Q.4. (a) Using the relation [x_i , p_j] = i $\hbar \delta_{ij}$, where i , j = x,y,z and $\vec{L} = \vec{r} \times \vec{p}$

show that

(i)
$$[L_z, x] = i\hbar y$$
; $[L_z, y] = -i\hbar x$ and $[L_z, z] = 0$ [6]

- (ii) Using the above identities show that $[L_z, r^2] = 0$ where $r^2 = x^2 + y^2 + z^2$. [2]
- (b)Using the relations

$$[\sigma_x, \sigma_y] = i\hbar\sigma_z$$
 , $[\sigma_y, \sigma_z] = i\hbar\sigma_x$, $[\sigma_z, \sigma_x] = i\hbar\sigma_y$

- (i) Show that $[\sigma_i, \sigma^2] = 0$ where i = x, y, z and $\sigma^2 = \sigma_x^2 + \sigma_y^2 + \sigma_z^2$. [6]
- (ii) Consider an Hamiltonian H which has the following properties

$$[H, \sigma^2] = 0$$

 $[H, \sigma_i] = 0$

Explain why the dynamical variable corresponding to only one component of the operator σ_i can be a measurable simultaneously with ${\bf H}$ and ${\bf \sigma}^2$. [3]

(c) If A and B are two operators which commute with their commutator [8] [A,B], prove that $[A,B^3]=3B^2$ [A,B].

Q.5.

(a) The Hamiltonian of a rotating system with moment of inertia I is given by the expression

$$H = \frac{1}{2I} (L_x^2 + L_y^2)$$

where $\vec{L} = \vec{r} \times \vec{p}$.

- (i) Show that $y_i^m(\vartheta, \varphi)$ are eigenfunctions of H. [2]
- (ii) Determine the eigen-value of H . [2]
- (iii) Determine the degeneracy of the states for l = 0,1,2. [6]
- (b) An electron is described by an Hamiltonian $H = H_0 + H_1$ where

$$H_0 = \frac{p^2}{2m} - \frac{e^2}{r}$$

and H₁ describes the contribution from an external force.

 H_0 has the eigenfunctions $\psi_{nim}=R_{ni}(r)Y_i^m(\vartheta,\varphi)$ and energy E_n . Here

n = principal quantum number = 1,2,3....., l = orbital angular momentum quantum number = 0,1,2,3......m = projection of orbital angular momentum or z-component of l.

The eigen functions $\psi_{n\ell m}$ have following properties:

$$H_0 \psi_{n\ell m} = E_n \psi_{n\ell m}$$
$$H_1 \psi_{n\ell m} = \alpha \psi_{n\ell m}$$

A state of the electron is described by eigenfunction $\phi = N(\psi_{100} - \sqrt{2}\psi_{210})$

- (i) Determine the normalization constant N. [5]
- (ii) Determine the expectation value of H . [7]
- (iii) Is φ an eigenfunction of H ? [3]

Note: $\int \psi_{n_1 \ell_1 m_1}^* \psi_{n_2 \ell_2 m_2} d\tau = \delta_{n_1 n_2} \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}$

@@@@END OF EXAMINATION@@@@

APPENDIX:

Given: $h=6.62606876 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}$, $\hbar=1.0546 \, \mathrm{x} \, 10^{-34} \, \mathrm{J} \, \mathrm{s}$, $c=velocity \, of \, light = 2.99792 \times 10^8 \, \mathrm{m} \, \mathrm{s}^{-1}$ $k=1.3807 \times 10^{-23} \, \mathrm{J} \mathrm{K}^{-1}$. $1ev=1.6022 \times 10^{-19} \, \mathrm{J}$. $mass \, of \, electron=9.10938 \times 10^{-31} \, \mathrm{kg}$. $mass \, of \, neutron/proton=1.6749 \times 10^{-27} \, \mathrm{kg}$,

Useful Information:

[
$$r_i$$
, p_j] = $i \delta_{ij}$ where r_i = (x , y , z) and p_i = (p_x , p_y , p_z),
[L_x , L_y] = $i\hbar$ L_z , [L_y , L_z] = $i\hbar$ L_x , [L_z , L_x] = $i\hbar$ L_y where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_{l}^{m}(\vartheta, \varphi)$ are eigenfunctions of L^{2} and L_{z} operators with the property

$$L^{2} Y_{\ell}^{m}(\mathcal{G}, \varphi) = \ell(\ell+1) \hbar^{2} Y_{\ell}^{m}(\mathcal{G}, \varphi)$$

$$L_z Y_{\ell}^m(\vartheta,\varphi) = m \hbar Y_{\ell}^m(\vartheta,\varphi)$$

Useful Integrals:

$$\int_{-\infty}^{\infty} dz \, e^{-\alpha z^2} = \sqrt{\frac{\pi}{\alpha}} \qquad , \quad \int_{-\infty}^{\infty} dz \, z^2 \, e^{-\alpha z^2} = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^3}} \qquad , \quad \int_{-\infty}^{\infty} dz \, z^4 \, e^{-\alpha z^2} = \frac{3}{4} \sqrt{\frac{\pi}{\alpha^5}}$$

$$\int_{0}^{\infty} exp(-t^2) dt = \frac{\sqrt{\pi}}{2} \qquad , \quad \int_{0}^{\infty} t^{2n+1} \, exp(-at^2) \, dt = \frac{n!}{2a^{n+1}} \qquad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \, exp(-at^2) \, dt = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n+1} \, a^n} \sqrt{\frac{\pi}{a}} \qquad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} sin^2(x) dx = \frac{x}{2} - \frac{1}{4} sin(2x) \quad ,$$

$$\int \sin(mx)\sin(nx) dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$
$$\int \sin(mx)\cos(nx) dx = -\frac{1}{2} \left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)} \right]$$

 $\int_{-\infty}^{\infty} H_n(\xi) H_m(\xi) \exp(-\xi^2) d\xi = \pi^{\frac{1}{2}} 2^n n! \, \delta_{nm} \quad \text{where} \quad H(\xi) \text{ are Hermite polynomials and}$ are real.

$$\int_{0}^{\infty} t^{z-1} \exp(-kt) dt = k^{-z} \Gamma(z) \quad \text{Re } z > 0, \text{Re } k > 0. ,$$

$$\Gamma(n+1) = n! \quad \text{for } n = 1, 2, \dots \text{ and } \Gamma(1) = 1.$$

$$\int x^{n} e^{-m\alpha x} dx = \frac{\Gamma(n+1)}{(m\alpha)^{n+1}} \quad \text{for } m > 0 \quad \text{and } n \ge 0.$$

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation with respect to the parameter in the exponential, e.g.

$$\int_{a}^{b} dx \ x \exp(-\gamma x) = -\frac{\partial}{\partial \gamma} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and} \quad \int_{a}^{b} dx \ x^{2} \exp(-\gamma x) = \frac{\partial^{2}}{\partial \gamma^{2}} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and so on.}).$$