UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2009/2010

TITLE OF PAPER

ELECTROMAGNETIC THEORY I

COURSE NUMBER

P331

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS <u>EIGHT</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P331 Electromagnetic Theory I

Question one

- (a) A very long thin conducting wire situated at z-axis and uniformly charged with line charge density ρ_l ,
 - (i) use integral Coulomb's Law and choose appropriate Gaussian surface, deduce that the electric field at a field point outside the given thin conducting wire is

 $\vec{E} = \vec{e}_{\rho} \frac{\rho_i}{2 \pi \varepsilon_0 \rho}$ where ρ is the distance from z-axis and

 \vec{e}_{ρ} is one of the unit vectors in cylindrical coordinate system (7 marks)

(ii) use $\Phi = -\int_{P_0}^P \vec{E} \cdot d\vec{l}$ to find the electric potential at point P where P_0 is the zero potential reference point here taken as $P_0: (\rho_0, 0, 0)$, deduce that

 $\Phi = \frac{\rho_l}{2 \pi \varepsilon_0} \ln \left(\frac{\rho_0}{\rho} \right)$ (5 marks)

(b) Two long thin conducting wires parallel to z-axis and lying on the y=0 plane, i.e, x-z plane, one situated at x=-b and carries $-\rho_i$ uniform line charge density and the other situated at x=+b and carries $+\rho_i$ uniform line charge density as shown in the Figure 1 (on y=0 plane) and Figure 2 (on z=0 plane) below:

(i) utilize the result in (a)(ii) and choose P_0 as the origin, apply the superposition principle to deduce that the electric potential at point P:(x,y,0) is

 $\Phi = \frac{\rho_l}{4 \pi \varepsilon_0} \ln \left(\frac{(x+b)^2 + y^2}{(x-b)^2 + y^2} \right)$ (7 marks)

(ii) use $\vec{E} = -\vec{\nabla} \Phi$ to find the electric field \vec{E} generated by the given two conducting wires. Also find the value of \vec{E} at the origin. (6 marks)

Questin two

(a) A static current I flows in the n_1 turn toroid l_1 wiring around a iron ring core of magnetic permeability μ with the rectangular cross-section area $(b-a)\times d$ as shown below

- (i) use integral Ampere's law, choose proper closed loops to find \vec{B} in terms of ρ , n_1 , μ & I within the iron core, i.e., $a \le \rho \le b$ & $0 \le z \le d$ region, (7 marks)
- (ii) find the total magnetic flux Ψ_m passing through the cross-section area $(b-a)\times d$ of the iron ring in counter clockwise sense, i.e., $\int_{S} \vec{B} \cdot d\vec{s}$ where $S: a \le \rho \le b$, $0 \le z \le d$ & $d\vec{s} = \vec{a}_{\phi} d\rho dz$, in terms of a, b, d, n_1, μ & I. (6 marks)
- (iii) find the external self-inductance L_e of the toroid wire l_1 in terms of a, b, d, μ & n_1 . (3 marks)
- (b) Placing a single turn secondary coil l_2 around the iron ring, if the toroid wire l_1 carries a sinusoidal current of $I_0 \sin(\omega t)$ instead of carrying a static current I, find the induced e.m.f. $V_2(t)$ for a single turn secondary coil l_2 in terms of $a, b, d, \omega, n_1, \mu \& I_0$ under quasi static situation. If a = 5 cm, b = 8 cm, d = 3 cm, $n_1 = 200$, f = 100 Hz, $\mu = 5000$ μ_0 and $I_0 = 0.1$ A, compute the amplitude of $V_2(t)$. (9 marks)

Question three

(a) A very long straight coaxial cable has its central axis aligned with z-axis, its inner and outer conducting cable's cross-sectional radius are a & b respectively and in-between the cables is a insulating layer of permittivity ε , as shown below:

- (i) electric potential f in the insulating layer is a function of ρ but independent of ϕ & z, i.e., $f(\rho)$, use Laplace equation to find the general solution of $f(\rho)$,
- (ii) if $f(\rho = a) = 0$ & $f(\rho = b) = V_0$, find the specific solution of $f(\rho)$, (5 marks)
- (iii) use $\vec{E} = -\vec{\nabla} f$ to find the electric field \vec{E} in the insulating layer. Use $E_{\rho}(\rho = b) = -\frac{\rho_s}{\varepsilon}$ to find the surface charge density ρ_s deposited on the outer cable's surface and then find the total charge q_0 deposited on one meter long outer cable's surface. Thus find the distributive capacitance c of the given coaxial cable in terms of a, b & ε . Compute the value of the distributive capacitance c if c if
- (b) For the time-independent (or static) case, setting $\vec{B} = \vec{\nabla} \times \vec{A}$ and using Coulomb's gauge, i.e., $\vec{\nabla} \cdot \vec{A} = 0$, to deduce the following Poisson's equations for \vec{A} from Maxwell's equations as $\nabla^2 \vec{A} = -\mu \vec{J}$. (5 marks)

Question four

(a) Starting with the following time harmonic Maxwell's equations for a material region represented by parameters of μ , ε & σ as

$$\begin{cases}
\vec{\nabla} \bullet \vec{\hat{E}}(\vec{r}) = 0 & \cdots & (1) \\
\vec{\nabla} \bullet \vec{\hat{H}}(\vec{r}) = 0 & \cdots & (2) \\
\vec{\nabla} \times \vec{\hat{E}}(\vec{r}) = -i \omega \mu \vec{\hat{H}}(\vec{r}) & \cdots & (3) \\
\vec{\nabla} \times \vec{\hat{H}}(\vec{r}) = (\sigma + i \omega \varepsilon) \vec{\hat{E}}(\vec{r}) & \cdots & (4)
\end{cases}$$

and further assuming that $\vec{\hat{E}}(\vec{r}) \& \vec{\hat{H}}(\vec{r})$ are functions of z only, i.e.,

$$\vec{\hat{E}}(\vec{r}) = \vec{a}_x \ \hat{E}_x(z) + \vec{a}_y \ \hat{E}_y(z) + \vec{a}_z \ \hat{E}_z(z) \qquad \dots (5)$$

$$\vec{\hat{H}}(\vec{r}) = \vec{a}_x \ \hat{H}_x(z) + \vec{a}_y \ \hat{H}_y(z) + \vec{a}_z \ \hat{H}_z(z) \qquad \dots (6)$$

deduce that $\hat{E}_z(z) = 0 = \hat{H}_z(z)$ and

$$\frac{d^2 \hat{E}_x(z)}{dz^2} = -\hat{\gamma}^2 \hat{E}_x(z) \quad \text{where} \quad \hat{\gamma} = \sqrt{\left(\omega^2 \mu \varepsilon - i \omega \mu \sigma\right)} \quad , \tag{12 marks}$$

- (b) An uniform plane wave travelling along + z direction with the field components of (E_x, H_y) has a complex electric field amplitude of $100 \, e^{i \, 60^0} \, \frac{V}{m}$ and propagates at $f = 10^6 \, Hz$ in a material region having the parameters of $\mu = \mu_0$, $\varepsilon = 9 \, \varepsilon_0$ & $\frac{\sigma}{\omega \, \varepsilon} = 1$,
 - (i) Find the values of the propagation constant $\hat{\gamma}$ (= $\alpha + i \beta$) and the intrinsic wave impedance $\hat{\eta}$ for this wave. (5 marks)
 - (ii) express the electric and magnetic fields in both their complex and real-time forms, with the numerical values of (b)(i) inserted, (5 marks)
 - (iii) find the values of the penetration depth, wave length and phase velocity of the given wave. (3 marks)

Question five

An uniform plane wave $(\hat{E}_{x1}^+, \hat{H}_{y1}^+)$, operates at $f = 5 \times 10^8$ Hz, is normally incident upon a lossless layer of 7.5 cm thickness with parameters of $(\mu = \mu_0, \varepsilon = 4 \varepsilon_0)$ as shown below:

- 0_1 , 0_2 & 0_3 are the respective origins for region 1, 2 & 3 chosen at the first and second interface. (Both region 1 and region 3 are air region.)
- (a) Define for the i^{th} region (i = 1, 2, 3) the reflection coefficient $\hat{\Gamma}_i(z)$ and the total wave impedance $\hat{Z}_i(z)$ and deduce the following:

$$\begin{cases} \hat{Z}_{i}(z) = \hat{\eta}_{i} \frac{1 + \hat{\Gamma}_{i}(z)}{1 - \hat{\Gamma}_{i}(z)} & \text{and reversely} \quad \hat{\Gamma}_{i}(z) = \frac{\hat{Z}_{i}(z) - \hat{\eta}_{i}}{\hat{Z}_{i}(z) + \hat{\eta}_{i}} & \text{and} \\ \hat{\Gamma}_{i}(z') = \hat{\Gamma}_{i}(z) e^{2\hat{\gamma}_{i}(z'-z)} & \text{where } z' \& z \text{ are two point s in } i^{th} \text{ region} \end{cases}$$
 (10 marks)

- (b) (i) find the values of $\hat{\gamma}_1$, $\hat{\gamma}_2$, $\hat{\gamma}_3$ & $\hat{\eta}_2$, (note: $\hat{\eta}_1 = \hat{\eta}_3 = 120 \pi \Omega$ and $\alpha_1 = \alpha_2 = \alpha_3 = 0$) (3 marks)
 - (ii) starting with $\hat{\Gamma}_3(z) = 0$ for the rightmost region , i.e., region 3 , and using continuous \hat{Z} at the interface as well as the equations in (a) , find the values of $\hat{Z}_3(0)$, $\hat{Z}_2(0)$, $\hat{\Gamma}_2(0)$, $\hat{\Gamma}_2(-10 \ cm)$, $\hat{Z}_2(-10 \ cm)$, $\hat{Z}_1(0)$ & $\hat{\Gamma}_1(0)$ (10 marks)
 - (iii) find the value of \hat{E}_{m1}^- if given $\hat{E}_{m1}^+ = 100 e^{i \cdot 0^0} \frac{V}{m}$ (2 marks)

Useful informations

$$e = 1.6 \times 10^{-19} C$$

$$m_e = 9.1 \times 10^{-31} kg$$

$$\mu_0 = 4 \pi \times 10^{-7} \frac{H}{m}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{F}{m}$$

$$\alpha = \frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 - 1}$$

$$\beta = \frac{\omega \sqrt{\mu \varepsilon}}{\sqrt{2}} \sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1}$$

$$\frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \frac{m}{s}$$

$$\hat{\eta} = \frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2}} e^{i\frac{1}{2}\tan^{-1}\left(\frac{\sigma}{\omega \varepsilon}\right)}$$

$$\eta_0 = 120 \pi \Omega = 377 \Omega$$

$$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0}$$

$$\iint_S \vec{E} \cdot d\vec{s} = \frac{1}{\varepsilon} \iiint_V \rho_V dV$$

$$\iint_S \vec{B} \cdot d\vec{s} = 0$$

$$\oint_L \vec{E} \cdot d\vec{l} = \mu \iint_S \vec{J} \cdot d\vec{s} + \mu \varepsilon \frac{\partial}{\partial t} \left(\iint_S \vec{E} \cdot d\vec{s}\right)$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_v}{\varepsilon}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$$

 $\vec{J} = \sigma \; \vec{E}$

$$\begin{split} & \iint_{S} \vec{F} \bullet d\vec{s} = \iiint_{S} \left(\vec{\nabla} \bullet \vec{F} \right) dv \qquad divergence theorem \\ & \iint_{S} \vec{F} \bullet d\vec{l} = \iint_{S} \left(\vec{\nabla} \times \vec{F} \right) \bullet d\vec{s} \qquad Stokes' theorem \\ & \vec{\nabla} \bullet \left(\vec{\nabla} \times \vec{F} \right) = 0 \\ & \vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = 0 \\ & \vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \bullet \vec{F} \right) - \nabla^{2} \vec{F} \\ & \vec{\nabla} f = \vec{e}_{x} \frac{\partial f}{\partial x} + \vec{e}_{y} \frac{\partial f}{\partial y} + \vec{e}_{z} \frac{\partial f}{\partial z} = \vec{e}_{p} \frac{\partial f}{\partial \rho} + \vec{e}_{\theta} \frac{1}{\rho} \frac{\partial f}{\partial \phi} + \vec{e}_{z} \frac{\partial f}{\partial z} \\ & = \vec{e}_{r} \frac{\partial f}{\partial r} + \vec{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta} + \vec{e}_{\theta} \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \\ & \vec{\nabla} \bullet \vec{F} = \frac{\partial (F_{z})}{\partial x} + \frac{\partial (F_{z})}{\partial y} + \frac{\partial (F_{z})}{\partial z} = \frac{1}{\rho} \frac{\partial (F_{\rho}, \rho)}{\partial \rho} + \frac{1}{\rho} \frac{\partial (F_{\theta})}{\partial \phi} + \frac{\partial (F_{z})}{\partial z} \\ & = \frac{1}{r^{2}} \frac{\partial (F_{r}, r^{2})}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{\theta} \sin(\theta))}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial (F_{\theta})}{\partial \phi} \\ & \vec{\nabla} \times \vec{F} = \vec{e}_{x} \left(\frac{\partial (F_{z})}{\partial y} - \frac{\partial (F_{y})}{\partial z} \right) + \vec{e}_{y} \left(\frac{\partial (F_{z})}{\partial z} - \frac{\partial (F_{z})}{\partial x} \right) + \vec{e}_{z} \left(\frac{\partial (F_{y})}{\partial z} - \frac{\partial (F_{z})}{\partial \rho} \right) \\ & = \frac{\vec{e}_{p}}{\rho} \left(\frac{\partial (F_{z})}{\partial \phi} - \frac{\partial (F_{\theta}, \rho)}{\partial z} \right) + \vec{e}_{\theta} \left(\frac{\partial (F_{\rho})}{\partial z} - \frac{\partial (F_{z})}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, \rho)}{\partial \rho} - \frac{\partial (F_{\theta}, \rho)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{r}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \theta} \right) - \frac{\partial (F_{\theta}, r)}{\partial \phi} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, \rho)}{\partial \rho} - \frac{\partial (F_{\theta}, \rho)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{r}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \theta} \right) - \frac{\partial (F_{\theta}, r)}{\partial \phi} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, \rho)}{\partial \rho} - \frac{\partial (F_{\theta}, r)}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \rho} - \frac{\partial (F_{\theta}, r)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{r}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \theta} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \rho} - \frac{\partial (F_{\theta}, r)}{\partial \rho} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \rho} - \frac{\partial (F_{\theta}, r)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{\theta}}{r^{2} \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \theta} - \frac{\partial (F_{\theta}, r)}{\partial \theta} \right) + \frac{\vec{e}_{\theta}}{r \sin(\theta)} \left(\frac{\partial (F_{\theta}, r)}{\partial \rho} - \frac{\partial (F_{\theta}, r)}{\partial \rho} \right) \\ & = \frac{\vec{e}_{\theta}}{r^{2}} \left(\frac{\partial (F_{\theta}, r)}{\partial \theta} - \frac{\vec{e}_{\theta}}{$$