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Q.1:

(A) (i) Define generalized coordinates and canonical coordinates. Explain
the difference between them. [2]

(i} Explain the term * the degrees of freedom in a dynamicai system”.

For the following planar system of three atoms of equal mass m with the
conformation of equilateral triangie, state the number of degrees of freedom

the system has with reference to a space fixed co-ordinate system. (5]

Assume the distance between the atoms along the bond is « .

(iii) What do you understand by the term ‘cyclic coordinate’ ? What is the
implication of existence of such a coordinate in a dynamical system? [2]

(iv) Explain the term " conservative system” . In such a system, what is the
general relation between force and the potential. [2]

(v) Explain the term ™ rigid body “. How many coordinates are necessary to
describe the motion of a rigid body? [2]

{B) Consider a particle of mass m confined to a motion on a plane with external
force given by the potential V(r) where r is the radial distance w.r.t. space fixed
co-ordinate system. Using plane polar co-ordinates,

(i) Define the Lagrangian for the system. [4]
(i) Derive the equations of motion using Lagrange’s equations. [8]
QI2I

(A) Consider a two particle system with masses m1'and m,. With reference to a
space fixed co-ordinate system, the two particles have following co-ordinates:
Particle 1: v and Particle 2: 7

(i) Define the centre of mass co-ordinate R for this system. [2]
(i) Show that the kinetic energy T for the system is given by [5]

T=—:12-MI/'¢2 + v’

where V, = R =velocity of centre of mass. ¥ =7, —¥%, = relative velocity .
v, = velocity of particle 1. v, =velocity of particle 2.
mm
M=m+m, and p=—7=12_
m, +nm,

(B) If the origin of the center of mass system coincides with the Sun in a
planetary motion, show that this implies that the Sun has infinite mass. [3]



(C) For a two body problem with the centre of mass as the origin, following

relation is given:
1
2 2
y7, 2ur

where E =Total energy, £ = Orbital angular momentum and u =Reduced mass.

k
Assume that the potential can be of the form V' (r) = —— which is attractive or
¥

k
V(r)=— which is repulsive for k >0 .
r

(i) Explain why only for attractive potential it is possible to have bound states
provided E<0. [5]

(ii) Describe the kind orbits one can have for bound states. [5]
(iii) What is the value of the radial velocity at turning points of a bound orbit? [1]

(iv) For a body moving under the influence of potential
k
V(iry=——
r
The orbit equation is given by

l=ﬁl-2£[l+ £cosf |
-

Here ¢ is the eccentricity of the orbit.

For a circular orbit of radius rp, and velocity v, , show that —ic——-—-v,f [4]
Hh

Q.3.

(A) Consider free small oscillations in one dimension about a position of stable
equilibrium of a particle with mass m and displacement as x .

(i) Show that the potential is given by %kxz. ' [5]
(ii) Derive an expression for the Lagrangian. 1]
(ili) Derive the equations of motion for this system. [3]
(iv) Show that angular frequency depends only on the property of the
mechanical system. [2]
(v) Show that the general solution of the equation of motion is (4]

x=c;cos(wit)+c,sin(wt)=acos(wt+a)

¢
where tan(a)=——= and a= \/clz + c%

€

Ik
Here @w=_.}— and ¢, ¢; = constants.
m



(B) In the case of two coupled oscillators of equal mass m the equations of
motion for normal modes are given as

J“c'l+—]-c—f,=0

”

X, +—%,=0  where k"=k+2k
m

Here x, =x, +Xx, and X, =x, —x, where x; and x, as displacement of
particles from their respective equilibrium positions .

(i) What are the frequencies of the normal modes. [5]
(i) Illustrate the normal vibrations with diagrams. (5]
Q.4.

—

(A) Foranyvector A,

L = =5+ ax4
di Jixed dt rotating

where @ = uniform angular velocity.
Velocity Vv relative to a inertial system whose origin coincides with center of
mass system is given as
V=V, +@OxXF
. = velocity of the particle in the rotationat co-ordinate system
and ¥ = radial vector .

(i) Show that to an observer in a rotating system the effective force [5]
on a particle of mass m is given by

1')'

Fog=F-mox(dx7F)-2mbdxVv,
F is the force in the inertial coordinate system.
(ii} What is the interpretation of the term méxoxr. [3]
(iii) Explain the physical significance of the last term ma xv,in the
relation for effective force. [5]

(B) The rotational motion of a rigid body, relative to body axes , Euler’s
equations of motion are

dL

dtx +o, L ~wl, =N,

dL
*+o,L -0, L =N,
t

dL,
” +o, L ~-o, L =N,

where, fori= X, vy, z:
L; = total angular momentum components,
@; = angular velocity components.
N; = moment of force or torque components.



Assuming there are no external forces and body axes are principal axes,
then L =I o, where I, are principal moments of inertia.

For symmetrical body and taking symmetry axis as the z-principal axis so that
I =1 '

x v
(i) Show that z-component of angular velocity is constant, [2]
(ii) Show that kinetic energy T =%IXA2 +":12*12 o [5]

(iii} Total angular momentum I =I’A*+1'e? . [5]
where 4’ =ao +o) .
Q.5.
(A) With H=Yg,p,—L(g,,4,,t) where L is a Lagrangian, show that

L dH oL
(1) o (5]

(ii) Show that for a function u(g,,p,.1), [5]

du =[u,H) +£3-li

dt ot

Use the identity to show that , if u does not depend on time explicitly
and if u is a constant of motion then

[, H}=0

(B) Consider for one dimensional motion of a particle of mass m under
the influence of potential of the form
Vix)=kx
where k is force constant.
(i) Write down the Hamiltonian in terms canonical variables. [5]
(ii) For an equation of the type

du
& ot H
= [u,H}

the formal solution is given by the series expansion
t2 t3
u(t) = uo +t[u’ H]O +5-'[[usH]9H]0 +§;[[[uaH]:H]3H]ﬂ +on

where subscript 0 denotes the initial conditions at t=0.

Use the above relation to show that for the given Hamiltonian, the
complete solution is given by a series [10]

t ki’
X=X, s R _EL
m 2m

where Xg and pg are position and momentum at t=0.

@@@@END OF EXAMINATION@@@@



Appendix:

(i) Plane polar coordinates are defined by the relation:
x=rcos(F) and y=rsin(F)
(ii) Spherical polar coordinates are defined by
x = rsin($) cos(p)
y = rsin(§)sin(p)
z =rcos(9)

(iil) Lagrange’s equations are given by: oL _4d iL— =0
og, dt\og,

(iv) Hamilton’s equations are given by the relations:

og, ap,
—Zt=(q, ,Hl and —=[p H
Pl C2ECS 5 ~PoH]
where H is the Hamiltonian of the dynamical system.

(v) Poisson bracket of two functions with respect to canonical variables
(q,p) is defined by

ou ov Ou ov
ke = fz(aqf op, op, 692-)
Following Poisson brackets have the properties:
lg; 9‘]1] =0=[p, ’p,']
lg, ’pj] =5}j =-{p, ’qj]
(vi) Following properties of Poisson brackets are useful:
[w,u]=0 , [2,v] = —~[v,u]
[au+bv,w]=alu,w]+b[v,w] where aandb are constants.
[uv,w]=u[v,w]+[u,w]v
fu,vw] =v{u,w]+[u,viw

Jacobi ldentity: [u,[v,w]}+[v,[w,u]]+[w,[1,v]]=0



