UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2009/2010

TITLE OF PAPER

MATHEMATICAL METHODS FOR

PHYSICISTS

COURSE NUMBER

P272

:

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS <u>SEVEN</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

- (a) Given $f = \rho^2 \cos(\phi) 4z^2$
 - (i) find the value of ∇f at a point $P(10, 220^0, -3)$, (5 marks)
 - (ii) find $\vec{\nabla} \times (\vec{\nabla} f)$ and shows that it is zero. (5 marks)
- (b) Given $\vec{F} = \vec{e}_x (6xy) + \vec{e}_y (3x^2 5z^2) + \vec{e}_z (-10yz)$ and find the value of $\int_{P_1, L}^{P_2} \vec{F} \cdot d\vec{l}$ if $P_1 : (0, 1, 0)$, $P_2 : (2, 5, 0)$ and
 - (i) L: a straight line from P_1 to P_2 on x-y plane, i.e., z=0 plane,

(7 marks)

(ii) L: a parabolic curve $y = x^2 + 1$ from P₁ to P₂ on x - y plane, i.e., z = 0 plane.

Compare this answer with that obtained in (b)(i) and comment on whether the given \vec{F} is a conservative vector field or not. (8 marks)

Question two

Given $\vec{F} = \vec{e}_r (r^2) + \vec{e}_\theta (6r^2 \sin \theta) + \vec{e}_\phi (3r^2 \cos \phi)$,

(a) find the value of $\oint_S \vec{F} \cdot d\vec{s}$ if S is the closed surface enclosing the upper half spherical ball of radius 6, i.e., $S = S_1 + S_2$ where

$$S_{1}: \begin{pmatrix} r=6 , 0 \leq \theta \leq \frac{\pi}{2} , 0 \leq \phi \leq 2\pi & \& d\vec{s} = \vec{e}_{r} r^{2} \sin\theta d\theta d\phi \\ & \xrightarrow{r=6} \vec{e}_{r} 36 \sin\theta d\theta d\phi \end{pmatrix}$$

$$S_{2}: \begin{pmatrix} \theta = \frac{\pi}{2} , 0 \leq r \leq 6 , 0 \leq \phi \leq 2\pi & \& d\vec{s} = \vec{e}_{\theta} r \sin\theta dr d\phi \\ & \xrightarrow{\theta = \frac{\pi}{2}} \vec{e}_{\theta} r dr d\phi \end{pmatrix}$$

(12 marks)

- (b) (i) find $\vec{\nabla} \cdot \vec{F}$, (4 marks)
 - (ii) then evaluate the value of $\iiint (\vec{\nabla} \cdot \vec{F}) dv$ where V is bounded by S given in (a), i.e.,

V: $0 \le r \le 6$, $0 \le \theta \le \frac{\pi}{2}$, $0 \le \phi \le 2\pi$ & $dv = r^2 \sin \theta \, dr \, d\theta \, d\phi$.

Compare this value with that obtained in (a) and make a brief comment.

(9 marks)

Question three

Given the following non-homogeneous differential equation as

$$\frac{d^2 x(t)}{dt^2} + 2 \frac{d x(t)}{dt} + 5 x(t) = 10 \sin(t) + 17 \cos(2t) ,$$

- (a) find its particular solution $x_p(t)$, (8 marks)
- (b) for the homogeneous part of the given non-homogeneous differential equation, i.e., $\frac{d^2 x(t)}{dt^2} + 2 \frac{d x(t)}{dt} + 5 x(t) = 0 \text{ , set } x(t) = \sum_{n=0}^{\infty} a_n t^{n+s} & a_0 \neq 0 \text{ and utilize the}$

power series method to find its two independent solutions in power series form truncated up to a_4 term. (15 marks)

(c) write down the general solution of the given non-homogeneous differential equation in terms of the answers obtained in (a) & (b). (2 marks)

Question four

Given the following partial differential equation as (a)

$$\frac{x^2 y}{3} \frac{\partial f(x,y)}{\partial x} + \frac{2}{x^2 y^2} \frac{\partial f(x,y)}{\partial y} = 0 \quad \text{, use separation variable scheme to deduce two ordinary differential equations.}$$
 (5 marks)

An elastic string of length 5 is fixed at its two ends, i.e., at x = 0 & x = 5(b) and its transverse deflection u(x,t) satisfies the following one-dimensional wave equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} = 4 \frac{\partial^2 u(x,t)}{\partial x^2} ,$$

by direct substitution, show that $u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{5}\right) \cos\left(\frac{2n\pi t}{5}\right)$ (i) where E_n $n=1,2,3,\cdots$ are arbitrary constants, satisfies two fixed end conditions, i.e., u(0,t) = 0 = u(5,t), as well as zero initial speed condition,

i.e.,
$$\frac{\partial u(x,t)}{\partial t}\Big|_{t=0} = 0$$
 (8 marks)

then find E_n in terms of n if the initial position of the string, i.e., u(x,0), is (ii)

given as
$$u(x,0) = \begin{cases} 2x & \text{if } 0 \le x \le 3 \\ -3x + 15 & \text{if } 3 \le x \le 5 \end{cases}$$

given as
$$u(x,0) = \begin{cases} 2x & \text{if } 0 \le x \le 3 \\ -3x + 15 & \text{if } 3 \le x \le 5 \end{cases}$$

(hint:
$$\int_{x=0}^{5} \sin\left(\frac{n\pi x}{5}\right) \sin\left(\frac{m\pi x}{5}\right) dx = \begin{cases} 0 & \text{if } n \ne m \\ \frac{5}{2} & \text{if } n = m \end{cases}$$

$$\int x \sin\left(\frac{n\pi x}{5}\right) dx = \frac{25}{n^2 \pi^2} \sin\left(\frac{n\pi x}{5}\right) - \frac{5}{n\pi} x \cos\left(\frac{n\pi x}{5}\right) \quad (12 \text{ marks})$$

Question five

Given the following coupled oscillator system as

$$\begin{cases} \frac{d^2 x_1(t)}{d t^2} = -20 x_1(t) + 8 x_2(t) \\ \frac{d^2 x_2(t)}{d t^2} = 5 x_1(t) - 26 x_2(t) \end{cases}$$

(a) set $x_1(t) = X_1 e^{i\omega t}$ & $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation $AX = -\omega^2 X$ where

$$A = \begin{pmatrix} -5 & 16 \\ 4 & -17 \end{pmatrix}$$
 & $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ (4 marks)

- (b) find the eigenfrequencies ω of the given coupled system, (5 marks)
- (c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (b), (6 marks)
- (d) write down the general solutions for $x_1(t)$ & $x_2(t)$. If the initial conditions are given as

$$x_1(0) = -3$$
, $x_2(0) = +2$, $\frac{dx_1(t)}{dt}\Big|_{t=0} = 4$ & $\frac{dx_2(t)}{dt}\Big|_{t=0} = 0$, find the specific

solutions for $x_1(t)$ & $x_2(t)$. (10 marks)

Useful informations

The transformations between rectangular and spherical coordinate systems are:

$$\begin{cases} x = r \sin(\theta) \cos(\phi) \\ y = r \sin(\theta) \sin(\phi) \\ z = r \cos(\theta) \end{cases} & & \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z}\right) \\ \phi = \tan^{-1} \left(\frac{y}{x}\right) \end{cases}$$

The transformations between rectangular and cylindrical coordinate systems are:

$$\begin{cases} x = \rho \cos(\phi) \\ y = \rho \sin(\phi) \\ z = z \end{cases} & \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1} \left(\frac{y}{x}\right) \\ z = z \end{cases}$$

$$\vec{\nabla} f = \vec{e}_1 \frac{1}{h_1} \frac{\partial f}{\partial u_1} + \vec{e}_2 \frac{1}{h_2} \frac{\partial f}{\partial u_2} + \vec{e}_3 \frac{1}{h_3} \frac{\partial f}{\partial u_3}$$

$$\vec{\nabla} \bullet \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_1} + \frac{\partial (F_2 h_1 h_3)}{\partial u_2} + \frac{\partial (F_3 h_1 h_2)}{\partial u_3} \right)$$

$$\vec{\nabla} \times \vec{F} = \frac{\vec{e}_1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial u_2} - \frac{\partial (F_2 h_2)}{\partial u_3} \right) + \frac{\vec{e}_2}{h_1 h_3} \left(\frac{\partial (F_1 h_1)}{\partial u_3} - \frac{\partial (F_3 h_3)}{\partial u_1} \right)$$

$$+ \frac{\vec{e}_3}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial u_1} - \frac{\partial (F_1 h_1)}{\partial u_2} \right)$$

where $\vec{F} = \vec{e}_1 F_1 + \vec{e}_2 F_2 + \vec{e}_3 F_3$ and

$$(u_1, u_2, u_3)$$
 represents (x, y, z) for rectangular coordinate system represents (ρ, ϕ, z) for cylindrical coordinate system represents (r, θ, ϕ) for spherical coordinate system

$$(\vec{e}_1 \ , \vec{e}_2 \ , \vec{e}_3)$$
 represents $(\vec{e}_x \ , \vec{e}_y \ , \vec{e}_z)$ for rectangular coordinate system represents $(\vec{e}_\rho \ , \vec{e}_\phi \ , \vec{e}_z)$ for cylindrical coordinate system represents $(\vec{e}_r \ , \vec{e}_\theta \ , \vec{e}_\phi)$ for spherical coordinate system

$$(h_1, h_2, h_3)$$
 represents $(1, 1, 1)$ for rectangular coordinate system represents $(1, \rho, 1)$ for cylindrical coordinate system represents $(1, r, r \sin(\theta))$ for spherical coordinate system