UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2008-09

TITLE OF THE PAPER:

NUCLEAR PHYSICS

COURSE NUMBER:

P442

TIME ALLOWED

THREE HOURS

INSTRUCTIONS:

• ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS SIX PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

A=Z+N= mass number, and N= neutron number. (i) Define mass defect. [1] (ii) Define nuclear binding energy. [1] Give an expression of the binding energy in terms of (a) Nuclear masses. [1] (b) Atomic masses. (iii) Define Q value for β^- , β^+ and electron capture. [3] (iv) The $^{22}_{11}Na$ (atomic mass = 20487..686 MeV) decays by β^+ emission and [4] electron capture(EC) to first excited state of $^{22}_{10}Ne$ (atomic mass=20484.844 MeV). Calculate the B⁺ decay Q-value and the EC decay Q-value in MeV. (B) (i)Define half life, mean life, decay constant and activity. [4] (ii) Write a brief note on "Radioactive Dating". [5] (iii) A 0.001 kg sample from an organic artefact is found to have a β count rate [5] of 2.1 counts per minute, which are assumed to originate from the decay of ${}^{14}_{6}C$ with a mean life time of 8270 years. If the abundance of ${}^{14}_{6}C$ in living matter is currently 1.2×10^{-12} , calculate the approximate age of the artefact. Q.2. (A) Write brief notes on any two of the following: (i) Scintillation detector. Explain why NaI crystal is doped with Tl . [5] [5] (ii) Fission and Fusion. (iii) Describe the significant processes through which the γ -rays in the [5] energy range greater than 5 MeV primarily interact with matter. (B) (i) Among the possible interactions: [2] S(scalar), V(vector), T(Tensor), A(axial vector) and P(pseudo-scalar); name the interactions which are the major contributors in Fermi type and GT-type B- transitions. What is the implication of the interactions on selection rules (the Fermi and GT) β-decay. (ii) State the conservation laws in weak interactions. Use the relevant conservation law to supply the missing component(s) in the following processes. Use the symbol X for the needed nuclei in the missing components. [4] (a) $^{40}_{10}K \rightarrow v +$ (b) ${}^{40}_{10}K \rightarrow \bar{\nu} +$ (iii) ^{137}Cs with its ground state $7/2^+$ decays by beta-decay to $1-1/2^-$ and $3/2^+$ [4] states of $^{137}_{56}Ba$. What types of transitions are expected in each case?

Q.1. (A) Consider an isotope of atomic mass M(Z,A) where Z=atomic number,

Q.3. Semi-empirical mass formula for nuclear mass m(Z,A) is given by

$$m(Z,A) = Zm_p + (A-Z)m_n - a_v A + a_s A^{\frac{2}{3}} + a_c Z^2 A^{-\frac{1}{3}} + a_a \frac{(A-2Z)^2}{A} + \delta A^{-\frac{1}{2}}$$

with $a_v=15.56$ MeV , $a_s=17.23$ MeV , $a_c=0.697$ MeV , $a_a=23.20$ MeV, and $\delta=11.2$ MeV for odd-odd = 0 for odd-even or even-odd. = -11.2 MeV for even -even

- (i) Explain the origin of various terms in the given semi-empirical mass formula. [10]
- (ii) Define Q value for α -particle emission in terms of mass m(Z,A) of parent nucleus and m(Z-2,A-4) of daughter nucleus.
 - (a) What is the relation between separation energy for α -particle and Q-value. [1]
 - (b) What is the relation between Q value and kinetic energy of the emitted α particle (E_{d}) and the kinetic energy of the daughter nucleus (E_{D}).
 - (c) Consider energy momentum conservation in α -decay to show that [5]

$$Q = E_{\alpha} \left[1 + \frac{m(2,4)}{m(Z-2,A-4)} \right]$$

(iii) The transuranic isotope $^{269}_{108}Hs$ decays 100 percent via α emission. [7] $^{269}_{108}Hs \Rightarrow ^{265}_{106}Sg + \alpha$

The kinetic energy of α -particle is $E_{\alpha}=9.23$ MeV.

Calculate the Q-value (also known as total energy) involved in α -decay of $^{269}_{108}Hs$. Hence calculate the recoil energy of daughter nucleus.

Assume
$$\frac{m(2,4)}{m(106,265)} = 0.01510$$

Q.4.

(A) (i) The ground state of ${}^{73}_{35}Br$ has $J^P=\frac{1}{2}^-$ and the first two excited states

have $J^P = \frac{5}{2}^-$ (26.92 keV) and $J^P = \frac{3}{2}^-$ (178.1 keV).

- (a) List the possible γ-transitions between these levels. [6]
- (b) Predict the most probable transitions. [3]
- (c) Draw the energy level diagram. [1]
- (ii) Explain why transition from 0^+ to 0^+ will not allow any γ -radiation. [3]
- (B) A nuclei X with spin-parity $\frac{5}{2}^+$ decays by α -particle emission to the following states in nuclei Y with spin-parity [6]

$$\frac{3}{2}^+$$
 , $\frac{5}{2}^-$, $\frac{7}{2}^-$

Assume that the ground state of Y to be $3/2^+$ and remaining states according to the order given in the spin assignments. For each state find the permitted value of orbital angular momentum ℓ_α for α -particle.

(C) The alpha-decay Q-value of 238U is 4.268 MeV. Calculate the height B of the Coulomb barrier between the alpha-particle and the daughter nucleus, assuming that the nuclear potential has a sharp edge at a radius of $1.4A^{1/3}$ fm. Calculate the distance b beyond which the alpha-particle kinetic energy is positive.

[6]

Q.5. (A) Following diagram gives the energy levels calculated using a realistic potential with spin-orbit interaction according to single particle shell model:

(i) What do you understand by the term " Magic Numbers"?

- [2]
- (ii) Explain how the spin and parities are determined using the single particle shell model for even-even, odd-even, even-odd and odd-odd nuclei.
- [4]
- (iii) What are the configurations of the ground states of the nuclei $^{93}_{41}Nb$ and [6] $^{33}_{16}S$ and what values are predicted in the single particle shell model for their spins
- $^{33}_{16}S$ and what values are predicted in the single particle shell model for their spins and parities?
- (iv) What are the parities and upper and lower limits for the spins for the ground [6] states of nuclei 6_3Li , ${}^{14}_7N$ and ${}^{28}_{13}Al$?
- **(B)** Describe the nature of nucleon-nucleon force with reference to the explanation of deuteron properties, namely, binding energy, magnetic moment and finite quadrupole moment.

@@@END OF EXAMINATION@@@

Appendix

Selection Rules:

(A) β -decay:

Type of Transition		ΔΙ	Parity Change
Allowed	Fermi	0	No
	GT	\pm 1 or 0 (except 0 \rightarrow 0)	No
1 st Forbidden	Fermi	± 1,0 (except 0 → 0)	Yes
	GT	$\pm 2, \pm 1, \text{ or } 0$ (except $0 \rightarrow 0$; $1/2 \rightarrow 1/2$; $0 \rightarrow 1$)	Yes
2 nd	Fermi	± 2	No
Forbidden	GT	± 3	No

(B) γ - decay:

	E1	E2	E3	E4
Δπ	Yes	No	Yes	No
∆J ≤	1	2	3	4
	M1	M2	М3	M4
Δπ	No	Yes	No	Yes
∆ J ≤	1	2	3	4

(C) Useful Information

PHYSICAL CONSTANTS 1 AND DERIVED QUANTITIES

Speed of light c = 2.99792458 x 10^8 m s⁻¹ ~ 3.00×10^{23} fm s⁻¹ Avogadro's number N_A = $6.02214199(47) \times 10^{26}$ molecules per-kg-mole Planck's constant h = $6.62606876(52) \times 10^{-34}$ J s $\hbar = 1.054571596(82) \times 10^{-34}$ J s = 0.65821×10^{-21} MeV s $\hbar^2 = 41.802$ u MeV fm² \hbar c = 197.327 MeV fm Elementary charge $e = 1.602176462(63) \times 10^{-19}$ C $e^2/4\pi\epsilon_0 = 1.4400$ MeV fm

Fine structure constant $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = 1 / 137.036$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

USEFUL FORMULAE

 $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$ where $t_{\frac{1}{2}} = \text{half life}$, $\lambda = \text{decay constant and } \tau = \text{mean life}$.

Energy width of a state of lifetime τ :

 Γ = 6.58212 x 10⁻²² / τ (s) MeV

Non-relativistic speed of mass m with energy E:

 $v = 1.389 \times 10^7 [(E(MeV) / m(u))]^{1/2} \text{ ms}^{-1}$

Non-relativistic wave number of mass m with energy E:

 $k=2\pi/\lambda=0.21874 [m(u) \times E(MeV)]^{1/2} fm^{-1}$

Wave number for a photon of energy E:

 $k=2\pi/\lambda=E/\hbar c=E\,(\text{MeV})\,/\,197.327\,\text{fm}^{-1}$

MASSES AND ENERGIES

Atomic mass unit m_u or $u = 1.66053873(13) \times 10^{-27}$ kg $m_u c^2 = 931.494$ MeV

Electron $m_e = 9.10938188(72) \times 10^{-31} \text{ kg}$

 m_e/m_u = 5.486 x 10⁻⁴ = 1/1823 m_ec^2 = 0.510998902(21) MeV

Proton $m_p = 1.67262158(13) \times 10^{-27} \text{ kg}$

 $m_p / m_u = 1.00727647$ $m_p c^2 = 938.272 \text{ MeV}$

Hydrogen $m_H = 1.673533 \times 10^{-27} \text{ kg}$

atom $m_H / m_u = 1.007825$ $m_H c^2 = 938.783 \text{ MeV}$

m = 1.67492716(13) × 10⁻²⁷ kg

Neutron $m_n = 1.67492716(13) \times 10^{-27} \text{ kg}$

 $m_n/m_u = 1.00866491578(55)$

 $m_n c^2 = 939.565 \text{ MeV}$

Alpha particle $m_a = 6.644656 \times 10^{-27} \text{ kg}$

 $m_a/m_u = 4.001506175$ $m_a c^2 = 3727.379 \text{ MeV}$

CONVERSION FACTORS

Fermi 1fm = 10⁻¹⁵ m

1 eV=1.6022 x 10⁻⁹ J

Million electron volts 1 MeV = $1.602176 \times 10^{-13} \text{ J}$

 $1 \text{ MeV/c}^2 = 1.783 \times 10^{-30} \text{ kg}$

Cross section (barn) 1 b = 10^{-28} m²

Year | $y = 3.1536 \times 10^7 \text{ s}$