UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2008-09

TITLE OF THE PAPER: QUANTUM MECHANICS-I

COURSE NUMBER : P342

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- > ANSWER ANY **FOUR** OUT OF **FIVE** QUESTIONS.
- > EACH QUESTION CARRIES **25** MARKS.
- > MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- > USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS Five PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q.1.

(a) A typical thermal neutron kinetic energy equals $\frac{3}{2}kT$ at T=300K. [6]

What is its velocity and its de-Broglie wavelength?

- **(b)** Using uncertainty relation, estimate the radius of the electron whose ionization energy is 13.6 eV. [6]
- (c) Explain [8]
 - (i) Parity.
 - (ii) Constant of motion in quantum mechanics.
 - (iii) Probability interpretation of wave function.
 - (iv) Complete set
- (d) The wave function of a particle moving in one dimension is given by: $\psi(x) = 0 \qquad \text{for } x < 0$ $= B\sqrt{x}\exp(-\beta x) \qquad \text{for } x \ge 0$

where β is a real and positive constant.

Calculate the normalization constant B. (It is a function of β .)

Note:
$$\Gamma(z) = k^2 \int_{0}^{\infty} t^{z-1} \exp(-kt) dt$$
 Re $z > 0$, Re $k > 0$.
 $\Gamma(n+1) = n!$ for $n = 1, 2, ...$ and $\Gamma(1) = 1$.

Q.2.

Suppose that the following wave functions are a solution to the one-dimensional time independent Schrödinger equation

$$\psi_n = N_n \sin\left(\frac{nx}{a}\right), \quad n = 1,2,3,...$$

where a is some constant, N_n is the normalization and $-\infty < x < \infty$.

- (i) Write an expression for the Hamiltonian and hence the Schrodinger equation which has ψ_n as its solution. What is the nature of the potential?
- (ii) What are the corresponding energies E_n and the full time-dependent [4] wave functions?
- (iii) Are these wave functions normalizable , if so determine the coefficients N_n ? [8]
- (iv) Determine the expectation values of <x> and . [5]

0.3.

(a) Given that $[r_i, p_j] = i\hbar \delta_{ij}$ where $r_i = (x, y, z)$ and $p_i = (p_x, p_y, p_z)$, and $[L_x, L_y] = i\hbar L_z$ where $\vec{L} = \vec{r} \times \vec{p}$, show that

(i)
$$[x, p^2] = 2i\hbar p_x$$
 where $p^2 = p_x^2 + p_y^2 + p_z^2$. [5]

(ii)
$$\int L \cdot L \cdot I = 2\hbar L$$
, [5]

where $L_{+} = L_{x} + iL_{y}$ and $L_{-} = L_{x} - iL_{y}$

(b) Using the relations

$$[\,\sigma_x^{},\sigma_y^{}\,]=i\hbar\sigma_z^{}\quad,\quad [\,\sigma_y^{},\sigma_z^{}\,]=i\hbar\sigma_x^{}\quad,\quad [\,\sigma_z^{},\sigma_x^{}\,]=i\hbar\sigma_y^{}$$

(i) show that
$$[\sigma_i, \sigma^2] = 0$$
 where $i = x$, y , z and $\sigma^2 = \sigma_x^2 + \sigma_y^2 + \sigma_z^2$. [10]

(ii) consider an Hamiltonian H which has following properties

$$[H, \sigma^{2}] = 0$$

 $[H, \sigma_{i}] = 0$

Explain why the dynamical variable corresponding to only one component [5] of the operator σ_i can be a measurable simultaneously with H and σ^2 .

Q.4. Verify that the two wave functions

[8]

$$\phi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

and

$$\phi_1(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} x \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

are solutions of the eigenvalue problem

$$\hat{H}\phi_n(x) = E_n\phi_n(x)$$
 with $\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$

(i) Determine
$$E_n$$
 for each of them. [5]

(iii) Determine the solutions
$$\phi_0(x,y,z)$$
 and $\phi_1(x,y,z)$ for the Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] + \frac{m\omega^2}{2} \left[x^2 + y^2 + z^2 \right]$$

and E_n for each of them.

Q.5. The stationary Schrödinger equation for a particle moving in a central potential V(r) is

$$E\Phi(r,\theta,\varphi) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} \right) + \frac{1}{2mr^2} \hat{L}^2 \Phi(r,\theta,\varphi) + V(r)\Phi(r,\theta,\varphi),$$

where \hat{L} is the angular momentum operator for the particle's motion.

(a) Write the wave function $\Phi(r,\theta,\phi)$ as a product of a radial [15]

function R (r) and an angular momentum eigenfunctions $Y_{r}^{m}(\theta, \varphi)$, and derive the differential equation for R(r). State the boundary conditions on R(r).

(b) An electron in the Coulomb field of a proton with Hamiltonian H is in a state described the wave function

$$\phi = \frac{1}{5} \left[4 \psi_{100} + 3 \psi_{211} \right]$$

- What is the expectation value of the energy? (i)
- What is the expectation value of L^2 and L_2 ?

Note that $\psi_{n/m} = R_{n/r}(r) Y_1^m(\vartheta, \varphi)$ is the eigenfunction of H with energy

$$\frac{E_0}{n^2}$$
 where E_0 is a constant and

n = principal quantum number,

/ = angular momentum quantum number

m = projection of angular momentum.

and
$$\int \psi_{n'l'm'} \psi_{nlm} d\tau = \delta_{n'n} \delta_{l'l} \delta_{m'm}$$

@@@@END OF EXAMINATION@@@@

Appendix:

PHYSICAL CONSTANTS AND DERIVED QUANTITIES

Speed of light $c = 2.99792458 \times 10^8 \text{ m s}^{-1} \sim 3.00 \times 10^{23} \text{ fm s}^{-1}$ Avogadro's number $N_A = 6.02214199(47) \times 10^{26}$ molecules per kg-mole Planck's constant $h = 6.62606876(52) \times 10^{-34} \text{ J s}$ $\hbar = 1.054571 \, 596(82) \times 10^{-34} \, \text{J s} = 0.65821 \times 10^{-21} \, \text{MeV s}$ $\hbar^2 = 41.802 \text{ u MeV fm}^2$ $\hbar c = 197.327 \text{ MeV fm}$

 $1 \text{fm} = 10^{-15} \text{ m}$ Fermi

$$1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$$

1 MeV=1.602176 x 10⁻¹³ J

Elementary charge $e = 1.602176462(63) \times 10^{-19} \text{C}$, $e^2/4\pi\epsilon_0 = 1.4400 \text{MeV fm}$

Fine structure constant
$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = 1 / 137.036$$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

[5]

[5]

MASSES AND ENERGIES

Atomic mass unit m_u or $u=1.66053873(13) \times 10^{-27}$ kg $m_u c^2=931.494$ MeV Electron $m_e=9.10938188(72) \times 10^{-31}$ kg =0.510998902(21) MeV Proton $m_p=1.67262158(13) \times 10^{-27}$ kg =938.272 MeV Neutron $m_n=1.67492716(13) \times 10^{-27}$ kg =938.783 MeV Hydrogen atom $m_H=1.673533 \times 10^{-27}$ kg =938.783 MeV Alpha particle $m_\alpha=6.644656 \times 10^{-27}$ kg =3727.379 MeV

Useful Information:

The functions $Y_{\ell}^{m}(\vartheta, \varphi)$ are eigenfunctions of L^{2} and L_{z} operators with the property $L^{2}Y_{\ell}^{m}(\vartheta, \varphi) = \ell(\ell+1)\hbar^{2}Y_{\ell}^{m}(\vartheta, \varphi)$ $L_{z}Y_{\ell}^{m}(\vartheta, \varphi) = m\hbar Y_{\ell}^{m}(\vartheta, \varphi)$

Useful Integrals:

$$\int \sin^2(kx) \, dx = \frac{x}{2} - \frac{1}{4k} \sin(2kx)$$

$$\int_{-a}^{+a} \sin^{2}(kx)dx = \frac{-\cos(ka)\sin(ka) + ka}{k} ; \int_{-a}^{+a} \cos^{2}(kx)dx = \frac{\cos(ka)\sin(ka) + ka}{k}$$

$$\int_{-a}^{+a} \cos(kx)\sin(kx)dx = 0 ; \int_{-a}^{+a} x\cos^{2}(kx)dx = 0 = \int_{-a}^{+a} x\sin^{2}(kx)dx$$

$$\int_{-a}^{+a} x\cos(kx)\sin(kx)dx = \frac{2ka\cos^{2}(ka) - \cos(ka)\sin(ka) - ka}{2k^{2}}.$$

$$\int_{0}^{\infty} exp(-t^{2})dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0; n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$
with Re a > 0 , n=0,1,2....