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Q.1.
(a) The average lifetime of an excited state of an atom is about /0% sec. Using this as [5]

At for the emission of a photon, compute the minimum Av permitted by the uncertainty
principle.

(b) Electromagnetic radiation consists a collection of quanta known as photons with [5]
energy hv . Calculate the number of photons emitted by 100 watt source with
A=600x10° m.

(c) Consider a free particle of mass m and momentum p in one dimension.

(i) Write down the Hamiltonian. (1]
(ii) Write down the time dependent Schrodinger equation for the given problem. [1]
(iif) Show that (61

wi(x,t)=[Aexp(ikx)+ Bexp(—ikx)] exp(—iEt/h)

is a solution of the time-dependent Schrodinger equation in one dimension and that

242
E = nk
2m
(iv) Show that l//*(x,t)l//(x,t) is real. [2]
(v) Find the relation between k and p. [1]

(vi) Show that the probability current S{x,t) corresponding to w.(x,t) is given by [4]

SC0)=2¢] 47 -|of

What is the interpretation of this?

Note: Current density in one dimension is given by the expression
/] . dy(x,t) dy (x,t
S0 = E};(w (2R _ 4y ( )w(x,t))

dx dx

Q.2.

(a) Explain the concept of parity. [1]
For each of the following functions, decide whether they have even, odd

or no definite parity:

(i) x? sin(kx) where k is a constant. [1]
(iy A+Bx . [1]

(b) A particle of mass m is bound in a one dimensional potential of the form

V(x) =-Vy for -L <x<L -~
= 0 for all other values of X and -00 < X <00



(i) Write down the Schrodinger equations. [2]
(i) Show that odd parity solutions for the bound states are [5]
#(x)=Aexp(-kx) for x>L
= Bsin(Kx) for —-L<x<lL
=Cexp(kx) for x<0 and lx| >L

2mE 2m(V,—\E
where k2=—!—| K?= (Vo | I) .
K K
Here A, B and C are constants.
do( x
(i) State the continuity conditions on @(x) and —%—) [2]
(iv) Use the continuity conditions to derive the following relations [8]
y=-zcotz
y2 72 = R?
2
2mV, L
where z=KL , y=kL and R?=""T0"_
. K2
(v) Explain how bound state energies can be determined for a given value Vpand L.  [3]
(vi) Write down the normalization condition on ¢('x) in terms of the solutions [2]
given above in (ii). Do not evaluate the integrals.
Q.3.
(a) Explain the following:
(i) What is the difference between a state of the system given by the ket |¢ m) [2]

and the wave function ¢, (r,%,¢) describing the same state.
(ii) A dynamical quantity is always represented by a Hermitian linear operator. [2]

(b) Orbital angular momentum L is defined by I::Fxf;. Using the identity [r,, p, ]=ih 6,

where iandj take the value 1,2 and 3 corresponding to x,y,z components respectively,
show that

(i) [L,,x]=0, [L.,yl=ihz and [L,,z]=—-iky [6]4
(i) [L,,r*]1=0 where r’=x*+y?+2z* . [4]

(c) A Hamiltonian H is defined in terms of operators A and A" by

H=wA'A +2ho
and Hug =E ug where E is energy of the system defined by H. Given the property
[A, A’ J= A and a function ve = A* Ug, show that



(V[ H, A" ]= hwA*
(ii) Use the result of (i) to show that vg belongs to energy E + h @ .

Q.4.
(a) A particle is described by the wave function

Y
w(x) = (%) exp(-ax?/2) With —oo<x <o

* (i) Show that w(x) is normalized.

0 show ot = [T~ [

where the symbol < ) corresponds to expectation value,

(iii) Show that Ap, =,/<pi>—<px)2 =h\/’§ where p, =—ih% .

(iv) What is the implication of the value of product AxAp,_?

(b) The potential energy of a 3-dimensional harmonic oscillator is given by
V=1imlo}x* + @l (y* +2%)]

The energy eigen-values are given by the relation
E=(m+3)ho +(n +ny+Dho,

where ny, n,,n3=0,1,2,...

(i) Determine E for its ground state.
(i) Determine E for its first excited state given by n;=0.
(ili) How many states belong to 1% excited state. Are they degenerate?

Q.5.
(a)The Hamiltonian of a system is given by the expression
1 1
H=— (L +12 )+—13
21/, (L Y J 21, z

Find an expression for the eigenvalue of the Hamiltonian.
Here L is orbital angular momentum.

(b) An electron in the Coulomb field of a proton with Hamiltonian H= Hoe+H,; is in a
state described by the wave function

1
g= _6'[4 Y100 T3 V211 — Varo +‘/-16 '/’21-1]

(i) Verify if the the wave function ¢ is normalized.
(ii) Determine the expectation value of energy E , L*and L,

m

Note that W,;, =R,,(r)Y,"(9,¢) is the eigen function of Ho with energy E,=—2

n
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where Ep is a constant and
n = principal quantum number= 1,2,3,.....,
I = angular momentum quantum number
m = projection of angular momentum onto the z-axis..

and J-y/n'l'm' Vaim dT:an’n 6/'/ 5m'm '

The eigen functions y,,.. have following properties:
Ho ¥ nem = En Vo

Hy ¥ pum = QW pum
and the eigen energy for the electron is given by H¢ = E¢ .

Q@A@@@END OF EXAMINATION@@@®@

Appendix:
PHYSICAL CONSTANTS AND DERIVED QUANTITIES

1Watt=11Js"
Speed of light ¢ =2.99792458 x 10° m s™ ~ 3.00 x 10% fm s
Avogadro's number N, = 6.02214199(47) x 10?® molecules per kg-mole
Planck's constant h = 6.626068 76( 52) x 104 Js
fi=1.054571 596(82) x 10! J 5 = 0.65821 X 10 MeV s

72 = 41.802 u MeV fm?
fic=197.327 MeV fm
Fermi 1fm=10"m
1eV=1.6022x10°J 1 MeV=1.602176 x 10" J

Elementary charge e = 1.602176462(63) x 10°C

&/4ng, = 1.4400MeV fm
2

=1/137.036

Fine structure constant o =
mEghC

Boltzmann constant  k = 1.3806503(24) x 102 JK' = 0.8617 x 10 eV K!
MASSES AND ENERGIES:

Atomic mass unit m, or u = 1.66053873(13) x 10% kg
m,c® =931.494 MeV

Electron me =9.10938188(72) x 10*' kg
| med/m, =5.486x 10™ =1/1823
mec’ = 0.510998902(21) MeV
Proton m, =1.67262158(13) x 10%" kg
m, / m, = 1.00727647

mpc’ =938.272 MeV



Hydrogen atom my =1.673533 x 107 kg

my/ m, =1.007825
myc’ = 938.783 MeV
Neutron m, =1.67492716(13) x 10%" kg
m,/m, = 1.00866491578(55)
m,’ =939.565 MeV
Alpha particle m, = 6.644656 x 10" kg
my /m,, =4.001506175
mg ¢’ =3727.379 MeV

Useful Information:

[A,CD]=[A,C]D+C[A,D]
[AC,D]=A[CD]+[A,D]C

The functions Y,” (&, ¢ ) are eigenfunctions of L? and L, operators with the property
Y] (3,0)=L+1)R* Y] (3,0)
L, Y(8,0)=mAY,"(3,)

Useful Integrals:

feos® () = cos(ka) S‘Z(k") tha feosthx)sinfenydx =0 5 [x cos?(k)dx = 0
+a 2 _ . '_
J-x cos(k) sin(oc)dx = 2ka cos” (ka) cosz(ka)sm(ka) ka .
e 2k
[exp(-t? )dt=£
o 2
T n!
J'tz"” exp(—at?) dt= 2o with Rea >0, n =0,1,2,..

0

@

1.3.5......(2n-1)\/?
t2" exp(-at? ) dt= =
I p( ) 2n+1 an a

0

with Rea > 0, n=0,1,2.....

Note: J-(even Sfunction of x)dx=2 J-(even function of x) dx
-a 0

I(odd Sfunction of x)dx =0,



