UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION

2008/2009

TITLE OF PAPER

ELECTRONICS I

COURSE NUMBER

P311

:

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION 1

- (a) (i) At what forward voltage does a diode for which the ideality factor, $\eta = 2$ conduct a current equal to $1000I_s$? (4 marks)
 - (ii) Determine the current, in terms of I_s , that flows in the same diode when its forward voltage is 0.7 V. (3 marks)
- (b) With the aid of diagrams, discuss the principle of operation of a p-n junction diode.

 Comment on the effect of forward and reverse biasing the diode. (10 marks)
- (c) A Zener regulator circuit of the form shown in Figure 1.1 is to be designed to establish a constant output of 6.8 V from a fixed 10 V supply. The load current requirement is fixed at 100 mA. The Zener is to be biased at 20 mA.
 - (i) Determine the value of R_s required. (6 marks)
 - (ii) If the load is accidentally removed from the Zener, determine the maximum diode current. (2 marks)

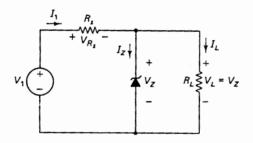


Figure 1.1

OUESTION 2

- (a) Sketch a bridge rectifier (without a smoothing capacitor) and explain how it works.

 (6 marks)
- (b) Imagine that a smoothing capacitor of capacitance C has been added across the load resistor of the bridge rectifier. With the aid of a schematic diagram that shows the variation of the output of this circuit with time, show that the ripple voltage, V_r can be expressed as follows:

$$V_r = \frac{I_{av}}{2fC}$$

where I_{av} represents the d.c. current and f stands for the frequency of the output. (6 marks)

- (c) Assume that the transformer secondary delivers a 60-Hz sinusoidal waveform of 12 V (rms) to the circuit described in (b) above and that the load resistance $R_L = 100 \Omega$.
 - (i) Find the value of C that results in a ripple voltage not larger than 1 V peak-to-peak.

(5 marks)

(ii) What is the average load current?

(2 marks)

(d) A certain unfiltered half-wave rectifier circuit of the form shown in Figure 2.1 is powered by the 120 V rms ac power system, and the turns ratio is $N_1 : N_2 = 6 : 1$.

Determine:

(i) the rms secondary voltage

(2 marks)

(ii) the peak secondary voltage

(2 marks)

(iii) the dc load voltage.

(2 marks)

Neglect any diode and transformer losses.

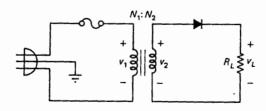


Fig. 2.1

OUESTION 3

- (a) With reference to Figure 3.1, calculate the current gains α and β when the base current is 14.46 μ A and the emitter current is to be 1.460 mA. The base-emitter voltage is 0.7 V. (4 marks)
- (b) Some dc measurements performed on a particular bipolar junction transistor with a fixed collector-emitter voltage yield the following data:

I _B (μA)	I _C (mA)
100	9
120	11.2

Determine the approximate value of β (a.c.) with respect to the operating point. (2 marks)

(c) Consider a simple bipolar junction transistor amplifier of the form shown in Figure 3.2. Assume that for a specific set of operating conditions, the peak values of input and output voltages are $V_{ip} = 12 \text{ mV}$ and $V_{op} = 2.16 \text{ V}$, respectively.

Determine the voltage gain A between input and output terminals.

(3 marks)

- (d) (i) For the circuit of Figure 3.3, determine I_E , I_C , V_{RC} , V_{RE} , and V_{CE} . (10 marks)
 - (ii) If the minimum value of β_{de} for the transistor is 50, determine the maximum possible value of I_B . Consider V_{BE} to be 0.7 V. (3 marks)
- (e) Some dc measurements performed in the base circuit of a particular *npn* transistor with a fixed collector-emitter voltage yield the following data:

V _{BE} (V)	I _B (μA)
0.65	100
0.66	150

Determine the appropriate value of hie at the operating point.

(3 marks)

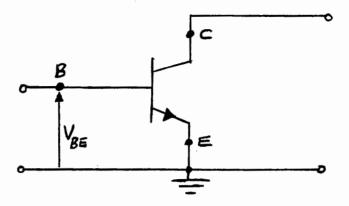


Fig. 3.1

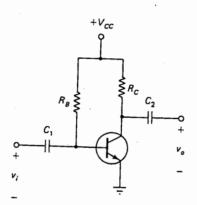


Fig. 3.2

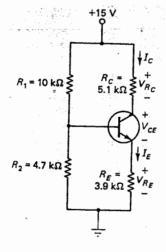


Fig. 3.3

QUESTION 4

- (a) (i) Determine the drain conductance and drain resistance values associated with lines (1), (2) and (3) for the hypothetical junction field effect transistor characteristics of Figure 4.1. (6 marks)
 - (ii) Comment on the variation of the drain resistance with V_{GS} . What behaviour does the junction field effect transistor exhibit in this region. (2 marks)
- (b) For the idealized junction field effect transistor drain characteristics of Figure 4.2, construct the transfer characteristic. (6 marks)
- (c) A certain *n*-channel junction field effect transistor has a gate-source cutoff voltage of -5 V and a zero-bias drain current of 12 mA. Assume that the transistor is biased with a gate-source voltage of -2 V.

Determine the ideal drain current in the pinch-off region.

(3 marks)

(d) Some dc measurements performed on an *n*-channel junction field effect transistor with a fixed drain-source voltage yield the following data:

V _{GS} (V)	I _D (mA)
-2	8
-1.9	8.6

Determine the approximate value of g_m in the region of operation.

(2 marks)

(e) With the aid of the circuit diagram of a common-source amplifier, draw the small signal model of the amplifier and label it. (6 marks)

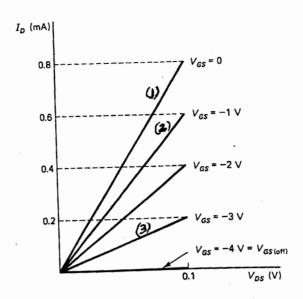


Fig. 4.1

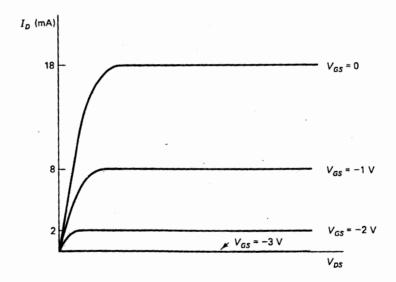


Fig. 4.2

QUESTION 5

- (a) Consider the differential amplifier shown in Figure 5.1. Determine
 - (i) the differential and common-mode input voltages. (4 marks)
 - (ii) the differential gain for $I_c = 1$ mA and (3 marks)
 - (iii) the common-mode rejection ratio. (4 marks)
- (b) (i) Draw the circuit diagram of a source follower. (3 marks)
 - (ii) Derive an expression for the voltage gain of the source follower and verify that it is approximately unity. (9 marks)
 - (iii) Calculate the output resistance of the source follower when g_m is 20 mS. (2 marks)

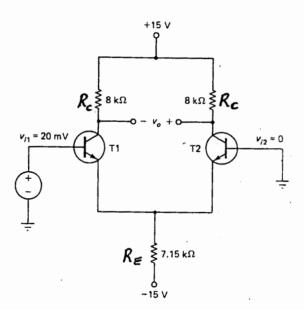


Fig. 5.1