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SECTION A
(Written Section)

Instruction: Use the information given in Appendix when necessary.

Q.1. (a) Explain the term random numbers. Why the random numbers [2]
generated on a computer are called as psuedo-random numbers.
(b) State advantages and disadvantages of Monte-Carlo integration. [2]
(c) Write a procedure in Maple code to calculate an integral [11]
1
[f(x)dx
0

for any function f(x).

Q.2. Consider random walk problem in two dimensions on a square [15]
lattice. The walk starts at the origin which is at a lattice point approximately

at the centre of the lattice and assume length of each step to be of one unit .
Each point on the lattice is recognized by the coordinates (x,y) from the origin.

Write a program in pseudo code to determine the distance d = w/xz + yz
for N =500,1000,2000,4000 where N=number of steps taken for a walk.

Note: Use for loop to increment value of N from the initial value.

Q.3. The equation of motion for the driven oscillator with damping force is
given by

2
md—§+bd—x+kx = [, cos(wt)
dt dt
where k is the force constant, b is damping constant , and Fp amplitude
of driving force of angular velocity o .

dx
Assume initial conditions to be at t=0 , x(t=0)=0 and E’ =0 .
t=0

(a) Convert the given equation into two first order differential equations. [2]

(b) Write an algorithm in pseudo code to find the solution x(t) on the [10]
interval 0<t<25 at n=200 points.
Extend the above pseudo code for n to n+10 and verify if the integral
is convergent with a precision of 0.01. [3]




SECTIONB
(Practical Section)

instruction: Use the information given in Appendix when necessary.

Q.4. For a charged thin wire along the x-direction which extends from [35]
x= a to b the potential V at any point (x,,y,) is given by the integral

sin(z k x)

(x- xo)2 +yg

V=_![

]}é

Assume that a= -3.5m and b=3.5m and k=0.1.

Write a program to calculate the potential at x,=1.2, yo=1.2 using the
Simpson method. Include in your program a criterion (precision) to confirm
that the integral is convergent , that is, calculate the integral with N steps and
then with N+20 steps and find the difference between the integrals and if the
difference is small then the integral is convergent.

Consider the precision to be 0.001.

Assume the initial value of N=40.

Note: Use the evaluated value of Pi

Q.5. Consider random walk problem in two dimensions on a square lattice.

The walk tarts at the origin which is at a lattice point approximately at the centre
of the lattice and assume length of each step to be of one unit . Each point on the
lattice is recognized by the coordinates (x,y) from the origin. At a distance of 25
units, in any direction, there is a point of no return , that is, the walk terminates
as soon as one reaches 25 units or more.

(a) Write a program and execute it to determine the number of steps [25]
required to reach the point of no return.

Consider initial value of for the number of steps to be N=1000.

(b) Convert the program into a procedure which is valid for any N, any [10]
distance of point of no return. Verify its working with N=1000, 2000.

Note: stats[random,uniform] (n) : # produces n uniform random numbers in
the range (0,1).

@@@@END OF EXAMINATION@@@®@




Appendix:

1. Solution of First Order Differential Equation with initial Conditions:

The equation is of the form Z—i’ =f(x,y) with the given initial

boundary condition y(x) = .

(i) Euler's Method:

yi+1=yi+hf(xiayi) where h = X1 - X

(ii) Fourth Order RK-Method:
yi+] =yi + (kl +2k2 + 2k3 +k4)/6
where
ki=hf(x,,y)
k2=hf(x,+0.5h,y,+0.5k1)

k3=hf(X/+ 0.5h,y,+ 0.5k2)
ki=hf(xi+h,y +ks) and h= x31-Xx

2. Numerical Integration:

(A) Simpson Rule:

(B) Monte Carlo Evaluation of Integrals:

b
Integral of the form F= [ f(x)dx is given by

b—-a) &

C=95 rx)

where x; is the i random number of n random numbers distributed uniformly in
the interval (a,b). The standard deviation can be estimated from the points sampled
in evaluating the integral by
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with 68.3% confidence.




