UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2007/2008

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER : P442

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY <u>FOUR</u> OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES 25 MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS **SIX** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

0.1:

(A)State whether each of the following statements is true or false. Give reasons, where applicable.

[5]

- (i) Electron do not feel the nuclear force at all..
- (ii) At short distances the nuclear force is stronger than Coulomb force.
- (iii)The fact that there are no bound states of the di-neutron and di-proton means that the nuclear force between a neutron and a proton is much stronger than that between two neutrons or between two protons.
- (iv) Shape of the nucleus is always spherical.
- (v) Even-Odd or Odd-Even nuclei in their ground states always have the angular momentum zero.

(B)

(i) Define half-life and mean lifetime.

[2]

(ii) Consider a simple decay process in which the initial number N_0 of radioactive nuclei of type A decay to stable nuclei of type B. In a time from t to t+ Δt , how many decays will occur?

[5]

(C) Explain the principle behind nuclear dating technique.

[4] [9]

- (D) Write short notes on
 - (i) Fluorescent radiation.
 - (ii) Auger process.
 - (iii) Internal Conversion.
- Q.2. Semi-empirical formula for binding energy is given by

$$B(Z,A) = aA - bA^{\frac{2}{3}} - s\frac{(A-2Z)^2}{A} - d\frac{Z^2}{A^{\frac{1}{3}}} - \delta\frac{1}{A^{\frac{1}{3}}}$$

with a = 15.835 MeV , b = 18.33 MeV , s = 23.20 MeV, d = 0.714 MeV and δ = 11.2 MeV for odd-odd or even -even = 0 for odd-even or even-odd.

(i) Use the above formula to derive an expression for Q value for α -particle emission, where

$$Q = B({}_{2}^{4}He) + B(Z-2,A-4) - B(Z,A)$$

(ii) Use the expression in (i) to find Q-value for for α -emission in $^{226}_{90}Th$. [10]

Q.3. (A) Following diagram gives the energy levels calculated using a realistic potential with spin-orbit interaction according to shell model:

(ii) Give the expected shell-model spin and parity assignments for the [10] ground states:

$${}^{7}Li$$
 , ${}^{11}_{5}B$, ${}^{15}_{6}C$, ${}^{17}_{9}F$, ${}^{31}_{15}P$

(B) It has been found that the α -emission of the Thorium isotopes can be described by the relation

$$log_{10}(\lambda) = 56.13 - \frac{105.07 \times 10^7}{v_{\alpha}}$$

where v_α is the velocity of α -particle in m/sec . The α -energy in the case of ^{224}Th is 7.33 MeV. What is the half life of ^{224}Th as estimated, from the above relation?

(C) (i) Define Q-value in a reaction

[2]

[7]

$$_{Z}^{A}X(p,d)_{Z'}^{A'}X'$$

(ii) In ⁹B(p,d)⁸Be reaction, calculate Q-value. [4]

Given: Atomic masses: ${}_{5}^{9}B = 9.013329 \text{ a.u.}$, ${}_{4}^{8}Be = 8.005305 \text{ a.u.}$ $^{1}_{1}H = 2.014102 \text{ a.u.}$, $^{1}_{1}H = 1.007825 \text{ a.u.}$

- (i) Explain why two types of selections rules (the Fermi and GT-selection rules) [2] exist in β -decay.
- (ii) One of the processes that is most likely responsible for the production of neutrinos in the sun is the electron-capture decay of ⁷₄Be . Following is the disintegration process involving electron capture

$${}^{7}_{4}Be \rightarrow {}^{7}_{3}Li + v_{e}$$

Assume Be to be at rest and neutrino rest mass to be zero.

- (a) Define electron capture energy E_c in terms of atomic masses of Be and Li. [2]
- [2] (b) Neglecting the binding energy of the captured electron, calculate the electron capture energy Ec.
- (c) Write down the equations relating to momentum conservation and energy [4] conservation in the given process.

Note: For a zero rest mass particle, **kinetic energy = c p**, where p is the momentum of the particle and c is the velocity of light.

[6] (d) Show that

$$E_c = -c \ p_{Li} + \frac{p_{Li}^2}{2m_{Li}}$$

where p_{IJ} = momentum of Li nucleus, m_{LJ} = rest mass of Li.

Given: Atomic mass of ${}^{7}_{3}Li = 6.015121 \, a.u.$ and ${}^{7}_{4}Be = 7.016928 \, a.u.$

- (iii) Classify the following decays according to degree of forbiddenness: [9]
 - (a) $^{26}_{13}Al(5^+) \rightarrow ^{26}_{12}Mg^*(2^+)$
 - **(b)** ${}_{17}^{36}Cl(2^+) \rightarrow {}_{18}^{36}Ar(0^+)$
 - (c) ${}^{89}_{38}Sr(5/2^+) \rightarrow {}^{89}_{39}Y(1/2^-)$

Q.5.

- (i) For the following γ transitions, give all permitted multipoles and indicate [7] which multipole might be most intense in the emitted radiation.
 - (a) $9/2^- \rightarrow 7/2^+$
 - (b) $1/2^- \rightarrow 7/2^-$
 - (c) $1 \rightarrow 2^+$ (d) $4^+ \rightarrow 2^+$

 - (e) $11/2^- \rightarrow 3/2^+$
- (ii) Explain why transition from 0⁺ to 0⁺ will not allow any γ -radiation.
- (iii) An even-Z, even-N nucleus has the following sequence of levels above its 0⁺ ground state:

2⁺(89keV), 4⁺(288keV), 6⁺(585(keV), 0⁺(1050keV), 2⁺(1129keV)

- (a) Draw an energy level diagram and show all reasonably probable [10] γ transitions and their dominant multipole assignments.
- (b) By considering also internal conversion, what additional transitions [6] would appear?

[2]

Appendix

Deuterium atom= 1876.14 MeV , Helium atom=3728.44 MeV

Mass excess for d = 13.136 MeV, Mass excess for p = 7.289 MeV

Selection Rules:

(A) β-decay:

Type of Transition		Spin Change ∆I	Parity Change
Allowed	Fermi	0	No
	GT	$0, \pm 1 \text{ (except } 0 \rightarrow 0)$	No
1 st	Fermi	$0, \pm 1$ (except $0 \rightarrow 0$)	Yes
Forbidden	GT	0 , ±1, ± 2	Yes
		(except $0 \to 0$; $1/2 \to 1/2$; $0 \to 1$)	
2 nd	Fermi	$\pm 1, \pm 2 \pmod{1 \rightarrow 1}$	No
Forbidden	GT	±2, ± 3	No
3 rd	Fermi	±2, ± 3	Yes
Forbidden	GT	± 3 , ± 4 (except $0 \rightarrow 0$)	Yes

(B) γ - decay:

	E1	E2	E3	E4
Δπ	yes	no	yes 3	no 4
∆⊅ ≤	M1	M2	M3	M4
Δπ Δ J ≤	no 1	yes 2	no 3	yes 4

 $\Delta\pi$ corresponds to parity change.

(C) Useful Information

PHYSICAL CONSTANTS 1 AND DERIVED QUANTITIES

Speed of light c = $2.99792458 \times 10^8 \text{ m s}^{-1} \sim 3.00 \times 10^{23} \text{ fm s}^{-1}$ Avogadro's number $N_A = 6.02214199(47) \times 10^{26} \text{ molecules per kg-mole}$ Planck's constant $h = 6.626068 76(52) \times 10^{-34} \text{ J s}$ $\hbar = 1.054571 596(82) \times 10^{-34} \text{ J s} = 0.65821 \times 10^{-21} \text{ MeV s}$ $\hbar^2 = 41.802 \text{ u MeV fm}^2$ $\hbar \text{ c} = 197.327 \text{ MeV fm}$

Elementary charge $e = 1.602176462(63) \times 10^{-19} \text{C}$ $e^2/4\pi\epsilon_0 = 1.4400 \text{MeV fm}$

Fine structure constant $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = 1/137.036$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

USEFUL FORMULAE

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$$
 where $t_{\frac{1}{2}} = \text{half life}$, $\lambda = \text{decay constant and } \tau = \text{mean life}$.

Energy width of a state of lifetime τ :

$$\Gamma$$
= 6.58212 x 10⁻²² / τ (s) MeV

Non-relativistic speed of mass
$$m$$
 with energy E :
 $\mathbf{v} = 1.389 \times 10^7 \left[(E(MeV) / m(u))^{-1/2} \text{ ms}^{-1} \right]$

Non-relativistic wave number of mass m with energy E:

$$k=2\pi/\lambda=0.21874 [m(u) \times E(MeV)]^{1/4} \text{ fm}^{-1}$$

Wave number for a photon of energy E:

$$k = 2\pi/\lambda = E / \hbar c = E (MeV) / 197.327 \text{ fm}^{-1}$$

MASSES AND ENERGIES

Atomic mass unit
$$m_u$$
 or $u = 1.66053873(13) \times 10^{-27} \text{ kg}$
 $m_u c^2 = 931.494 \text{ MeV}$

Electron
$$m_e = 9.10938188(72) \times 10^{-31} \text{ kg}$$

$$m_e/m_u$$
 = 5.486 x 10⁻⁴ = 1/1823
 m_ec^2 = 0.510998902(21) MeV

Proton
$$m_p = 1.67262158(13) \times 10^{-27} \text{ kg}$$

$$m_p / m_u = 1.00727647$$

 $m_p c^2 = 938.272 \text{ MeV}$

Hydrogen atom
$$m_H = 1.673533 \times 10^{-27} \text{ kg}$$

$$m_H / m_u = 1.007825$$

 $m_H c^2 = 938.783 \text{ MeV}$

Neutron
$$m_n = 1.67492716(13) \times 10^{-27} \text{ kg}$$

$$m_n/m_u = 1.00866491578(55)$$

 $m_nc^2 = 939.565 \text{ MeV}$

Alpha particle
$$m_{\alpha} = 6.644656 \times 10^{-27} \text{ kg}$$

$$m_{\alpha}/m_{u} = 4.001506175$$

 $m_{\alpha}c^{2} = 3727.379 \text{ MeV}$

CONVERSION FACTORS

Fermi
$$1 \text{fm} = 10^{-15} \text{ m}$$

 $1 \text{ eV} = 1.6022 \times 10^{-9} \text{ J}$

Million electron volts
$$1 \text{ MeV} = 1.602176 \times 10^{-13} \text{ J}$$

$$1 \text{ MeV/c}^2 = 1.783 \times 10^{-30} \text{ kg}$$

Cross section (barn)
$$1 \text{ b} = 10^{-28} \text{ m}^2$$

Year
$$1 \text{ y} = 3.1536 \times 10^7 \text{ s}$$