UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2007/2008

TITLE OF THE PAPER: NUCLEAR PHYSICS

COURSE NUMBER : P442

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY <u>FOUR</u> OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES **25** MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS **SIX** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

	nsider an isotope of atomic mass $M(Z,A)$ where $Z=$ atomic number, $A=$ mass $=Z+N$, and $N=$ neutron number.	
	ne mass defect.	[1]
` '	ne nuclear binding energy.	[1]
(an expression of the binding energy in terms of (a) Nuclear masses. (b) Atomic masses.	[1] [1]
Give	ine nuclear separation energy. e an expression of separation energy in terms of relevant binding energies for (a) Neutron separation energy. (b) Proton Seperation energy.	[1] [2] [2]
(iv) Cald		
	(a) Binding energy of ${}^{15}_{7}N$, ${}^{16}_{7}N$ and ${}^{16}_{8}O$.	[6]
	(b) Neutron separation energy in ${}^{16}_{7}N_{}^{}$ and proton separation energy in ${}^{16}_{8}O$.	[4]
	ne radius of the nucleus. (a) For mirror nuclei , the Coulomb energy difference is given by the	[2]
	expression $\left \Delta E\right = \frac{6Ze^2}{5R}$, where Z corresponds to an isotope of smaller	
	value between the two nuclei. Use this expression to estimate R in the case of $^{15}_{7}N$.	[4]
Given:	$^{15}_{7}N$ (atomic mass=15.00011(u)) , $^{16}_{7}N$ (atomic mass=16.0061(u))	
	$^{15}_{8}O$ (atomic mass= 15.994915(u)).	
Q.2. (a) Def	ine half life, mean life, decay constant.	[3]
	isider a piece of wood, weighing 50 gm, which has an activity of integrations /minute for ${}^{14}_{6}C$. The corresponding activity in a living	[7]
	12 disintegrations/minute/gm. The half life of $^{14}_{\ 6}C$ is 5730 yrs. ine the age of the wood.	
99.28%	abundances of ^{238}U and ^{234}U in the present day natural uranium are and 0.0058% respectively. The half life of ^{238}U is 4.498 x 10 10 yrs. te the half life of ^{234}U .	[5]
	te brief notes on) Flourescent radiation and scintillation detector. Explain why NaI crystal	[5]
·	is doped with TI .	[5]
	γ -radiation detection ? Explain your answer.	
_) Use the given shell model level scheme to determine the angular momentum	m
	0 51	[10]
What do	o you understand by the term " Magic Numbers" ?	

Note: Refer to a better reproduction of the figure provided at the examination hall .

(B)

(i) Explain why two types of selection rules (the Fermi and GT) exist [2] in β-decay.

(ii) Among the possible interactions:

S(scalar), V(vector), T(Tensor), A(axial vector) and P(pseudo-scalar);

name the interactions which are the major contributors in Fermi type and GT-type β - transitions. [2]

(iii) Following the decay of ¹⁷Ne a highly excited state in ¹⁷F emits a 10.597 MeV proton in decaying to the ground state of ¹⁶O.

- (a) Draw the decay scheme diagram. [1]
- (b) What is the maximum energy of the positrons emitted in the decay of the ¹⁷F excited state? [6]
- (iv) ¹³⁷Cs with its ground state 7/2⁺ decays by beta decay to 11/2⁻ and 3/2⁺ [4] States of ¹³⁷Ba. What types of transitions are expected in each case?

Q.4. (A) Semi-empirical mass formula is given by

$$m(Z,A) = Zm_p + (A-Z)m_n - a_v A + a_s A^{\frac{2}{3}} + a_c Z^2 A^{-\frac{1}{3}} + a_a \frac{(A-2Z)^2}{A} \pm \delta \begin{bmatrix} odd - odd \\ even - even \end{bmatrix}$$

where m(Z,A) corresponds to nuclear mass.

(i) Explain the origin of the various terms. [6]

(ii) Define the Q-value for the symmetric spontaneous fission. [2]

- (iii) Using the given Semi-empirical mass formula and neglecting the pairing energy [7] contribution, show that symmetric spontaneous fission depends only on surface energy and Coulomb energy contributions.
- (B) The α -decay of $^{253}_{99}Es$ (I = 7/2, $\pi = +$) leads to a sequence of **negative-parity** states in $^{249}_{97}Bk$ with spin 3/2, 5/2, 7/2, 9/2, 11/2, 13/2 .

Assume that ground state of $^{249}_{97}Bk$ has spin 3/2 and all other states are excited states according to the order given in the spin assignments. The excited states decay by γ - transitions.

- (a) For each state find the permitted values of ℓ_{α} [6]
- (b) Draw an energy level diagram. [4]

Q.5. (A)

- (i) ${}_{8}^{7}Li$ emits a 0.48 MeV , γ -ray in transition from $\frac{1}{2}$ to $\frac{3}{2}$. [5] What are the possible choices for the multi-polarity and nature of emitted radiation.
- (ii) Explain why transition from 0^+ to 0^+ will not allow any γ -radiation. [2]
- (iii) 57 Co which has the spin-parity $\frac{7}{2}^-$, decays by an allowed GT-transition [6] through K-Capture to an excited state of 57 Fe . The following γ -emissions are observed in 57 Fe .

E_{γ} (MeV)	Multipolarity
0.136	E2 (10%)
0.1216	M1 (90%)
0.0144	M1

The ground state of 57 Fe is $\frac{1}{2}^{-}$.

Construct a self-consistent energy level scheme for $^{57}{\rm Fe}$ and assign spins and parities.

- (B) List the conservation laws in Nuclear Reactions.
- (i) In a nuclear reaction involving a projectile of mass M_1 with kinetic energy E_1 and a stationary target of mass M_2 produces products of mass M_3 of kinetic energy E_3 and mass M_4 of kinetic energy E_4 .

Show that Q-value (in the lab.system) is given by [9]

$$Q = E_3(1 + \frac{M_3}{M_4}) - E_1(1 - \frac{M_1}{M_4}) - 2\frac{\sqrt{M_1 M_3 E_1 E_3}}{M_4}\cos\theta$$

where $\boldsymbol{\theta}$ is the angle between the projectile direction and the outgoing nuclei M_3 .

@@@END OF EXAMINATION@@@

[3]

Appendix

Selection Rules:

(A) β -decay:

Type of Transition		ΔΙ	Parity Change
Allowed	Fermi	0	No
	GT	± 1 or 0	No
		$(\text{except } 0 \rightarrow 0)$	
1 st	Fermi	± 1,0	Yes
Forbidden		(except $0 \rightarrow 0$)	
	GT	$\pm 2, \pm 1, \text{ or } 0$	Yes
	L	(except $0 \to 0$; $1/2 \to 1/2$; $0 \to 1$)	
2 nd	Fermi	± 2	No
Forbidden	GT	± 3	No

(B) γ - decay:

	E1	E2	E3	E4
Δπ	Yes	No	Yes	No
∆J ≤	1	2	3	4
	M1	M2	М3	M4
Δπ	No	Yes	No	Yes
ב	1	2	3	4

(C) Useful Information

PHYSICAL CONSTANTS 1 AND DERIVED QUANTITIES

Speed of light $c = 2.99792458 \times 10^8 \text{ m s}^{-1} \sim 3.00 \times 10^{23} \text{ fm s}^{-1}$ Avogadro's number $N_A = 6.02214199(47) \times 10^{26} \text{ molecules per kg-mole}$ Planck's constant $h = 6.626068 \ 76(52) \times 10^{-34} \text{ J s}$

 $\hbar = 1.054571~596(82) \times 10^{-34} \text{ J s} = 0.65821 \times 10^{-21} \text{ MeV s}$

 $h^2 = 41.802 \text{ u MeV fm}^2$

 $\hbar c = 197.327 \text{ MeV fm}$

Elementary charge $e = 1.602176462(63) \times 10^{-19}$ C

$$e^2/4\pi\varepsilon_0 = 1.4400$$
MeV fm

Fine structure constant $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = 1 / 137.036$

Boltzmann constant $k = 1.3806503(24) \times 10^{-23} \text{ JK}^{-1} = 0.8617 \times 10^{-4} \text{ eV K}^{-1}$

USEFUL FORMULAE

$$t_{1/2} = \frac{\ell n2}{\lambda} = \tau \, \ell n2$$
 where $t_{1/2} = \text{half life}$, $\lambda = \text{decay constant and } \tau = \text{mean life}$.

Energy width of a state of lifetime τ :

$$\Gamma$$
= 6.58212 x 10⁻²² / τ (s) MeV

Non-relativistic speed of mass m with energy E:

$$\mathbf{v} = 1.389 \times 10^7 \left[(E(MeV) / m(u))^{1/2} \text{ ms}^{-1} \right]$$

Non-relativistic wave number of mass m with energy E:

$$k=2\pi/\lambda=0.21874 [m(u) \times E(MeV)]^{1/2} \text{ fm}^{-1}$$

Wave number for a photon of energy *E*:

$$k = 2\pi/\lambda = E / \hbar c = E (MeV) / 197.327 \text{ fm}^{-1}$$

MASSES AND ENERGIES

Atomic mass unit
$$m_u$$
 or $u = 1.66053873(13) \times 10^{-27} \text{ kg}$

$$m_{\nu}c^2 = 931.494 \text{ MeV}$$

Electron
$$m_e = 9.10938188(72) \times 10^{-31} \text{ kg}$$

$$m_e/m_u$$
 = 5.486 x 10⁻⁴ = 1/1823
 m_ec^2 = 0.510998902(21) MeV

Proton
$$m_p = 1.67262158(13) \times 10^{-27} \text{ kg}$$

$$m_p / m_u = 1.00727647$$

 $m_p c^2 = 938.272 \text{ MeV}$

Hydrogen atom
$$m_H = 1.673533 \times 10^{-27} \text{ kg}$$

$$m_H / m_u = 1.007825$$

 $m_H c^2 = 938.783 \text{ MeV}$

Neutron
$$m_n = 1.67492716(13) \times 10^{-27} \text{ kg}$$

$$m_n/m_u = 1.00866491578(55)$$

 $m_nc^2 = 939.565 \text{ MeV}$

Alpha particle
$$m_{\alpha} = 6.644656 \times 10^{-27} \text{ kg}$$

$$m_{\alpha}/m_{u} = 4.001506175$$

 $m_{\alpha} c^{2} = 3727.379 \text{ MeV}$

CONVERSION FACTORS

Fermi
$$1 \text{ fm} = 10^{-15} \text{ m}$$

 $1 \text{ eV} = 1.6022 \times 10^{-9} \text{ J}$

Million electron volts
$$1 \text{ MeV} = 1.602176 \times 10^{-13} \text{ J}$$

$$1 \text{ MeV/c}^2 = 1.783 \times 10^{-30} \text{ kg}$$

Cross section (barn)
$$1 \text{ b} = 10^{-28} \text{ m}^2$$

Year
$$1 \text{ y} = 3.1536 \text{ x } 10^7 \text{ s}$$

Source: 1998 CODATA Recommended Values. Uncertainties are given in parentheses.