UNIVERSITY OF SWAZILAND.

FACULTY OF SCIENCE.

DEPARTMENT OF PHYSICS.

MAIN EXAMINATION 2008.

TITLE OF PAPER: SOLID STATE PHYSICS.

COURSE NUMBER: P412.

TIME ALLOWED: THREE HOURS.

ANSWER ANY FOUR QUESTIONS . ALL CARRY EQUAL MARKS.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question One.

- (a) Sate two properties of a *primitive* unit cell. (2 marks)
- (b) Draw *one* figure showing a conventional unit cell and also its primitive cell of an fcc lattice

(4 marks)

(c) One side of a conventional unit cell of an f.c.c. lattice is 3 Å. What is the volume of its primitive unit cell?

(2 marks)

(d) Calculate the separation between two (123) planes of an orthorhombic lattice with cell lengths, a = 0.82 nm, b = 0.94nm and c = 0.75nmin the x,y, z directions.

(3 marks)

- (e) Compute the packing fraction of a b.c.c lattice. (4 marks)
- (f) Find the indices of the (100) planes of an f.c.c lattice as referred to its primitive axes. (4 marks)
- (g) Show that the reciprocal lattice of a b.c.c is f.c.c. (6 marks)

Given:

Primitive translation vectors of fcc are:

$$a_1 = \frac{1}{2}a(\hat{x} + \hat{y}), b_1 = \frac{1}{2}a(\hat{y} + \hat{z}), c_1 = \frac{1}{2}a(\hat{z} + \hat{x})$$

Primitive translation vectors of bcc are:

$$a_1 = \frac{1}{2}a(\hat{x} + \hat{y} - \hat{z}), b_1 = \frac{1}{2}a(-\hat{x} + \hat{y} + \hat{z}), c_1 = \frac{1}{2}a(\hat{x} - \hat{y} + \hat{z})$$

Question Two.

(a) Obtain an expression for the dispersion relation for a one-dimensional monatomic linear lattice of lattice constant "a", atomic mass "M" and force constant "C"

(15 marks)

- (b) (i) Draw a sketch showing how the phonon frequency varies with wave vector in the first Brillouin zone. (4 marks)
 - (ii) What are the values of the frequency for k = 0 and $k = \pi / a$? (2 marks)
- Show that when the phonon wavelength is large compared to the interatomic spacing the phase velocity $\frac{\omega}{K} = a\sqrt{\frac{c}{M}}$ where "c" is the interatomic force constant for nearest neighbours. (4 marks)

Question Three.

- (a) State the assumptions Drude made in his free electron theory of metals. (3 marks)
- (b) Define the terms *mean free path* and *mobility* of an electron. (2+2 marks)
- (c) Show that according to Drude theory the d.c electrical conductivity of a metal can be expressed as:

$$\sigma = \frac{ne^2 \tau}{m}$$
, where symbols have their usual meanings. (10 marks)

- (d) (i) State Wiedemann Franz law. (3marks)
 - (ii) Write down the expression for *Lorenz number* and calculate its value. (2 + 3 marks)

Question Four.

- (a) (i) Define the terms: "density of states" and "Fermi energy". (4 marks)
 - (ii) Derive an expression for the density of states of a system of electrons given that the Fermi energy:

$$\varepsilon_F = \frac{h^2}{2m} \left(\frac{3\pi^2 N}{V} \right)^{2/3} \tag{6 marks}$$

- (iii) Calculate the density of energy states at 2.05 eV energy for a system of electrons in a volume of 1 cm³. (8 marks)
- (b) (i) Show that the electronic contribution to heat capacity of a metal is proportional to absolute temperature. (4 marks)
 - (ii) Discuss the heat capacity of metals, explaining difference if any between the above theory and experimental values. (3 marks)

Question Five.

(a) Giving silicon as an example explain how electrical conductivity of a semiconductor can be increased by doping.

(6 marks)

(b) With the help of appropriate diagram, derive an expression for the effective density of states in the conduction band of a semiconductor. Assume: $(\epsilon - \epsilon_F) \gg kT$.

(10 marks)

Given:

Fermi -Dirac distribution function:
$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \varepsilon_F)/kT} + 1}$$

Density of states for a system of fermions:

$$D(\varepsilon)d\varepsilon = \frac{4\pi}{h^3}(2m)^{3/2}\varepsilon^{1/2}d\varepsilon$$

(c) A doped semiconductor has electron and hole concentrations $2x10^{13}$ cm⁻³ and 1.41×10^{13} cm⁻³ respectively. Calculate the electrical conductivity of the sample. (5 marks)

[Take:
$$\mu_n = 4200 \text{ cm}^2 \text{ V}^{\text{-1}} \text{s}^{\text{-1}}$$
. $\mu_p = 2000 \text{ cm}^2 \text{ V}^{\text{-1}} \text{s}^{\text{-1}}$]

(d) Discuss briefly the process of photoconductivity in semiconductors. (4 marks)

Appendix 1

Various definite integrals.

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{3} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{4} dx = \frac{3}{8a^{2}} \left(\frac{\pi}{a}\right)^{1/2}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{5} dx = \frac{1}{a^{3}}$$

$$\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$\int_{0}^{\infty} x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$$

$$\int_{0}^{\infty} \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}} dx = \frac{4\pi^{4}}{15}$$

$$\int_{0}^{\infty} \frac{x^{1/2}}{e^{x} - 1} dx = \frac{2.61\pi^{1/2}}{2}$$

Appendix 2

Physical Constants.

Quantity	symbol	value
Speed of light Plank's constant	c h	3.00 x 10 ⁸ ms ⁻¹ 6.63 x 10 ⁻³⁴ J.s
Boltzmann constant Electronic charge	k	$1.38 \times 10^{-23} \text{ JK}^{-1}$
Mass of electron	e m _e	1.61 x 10 ⁻¹⁹ C 9.11 x 10 ⁻³¹ kg
Mass of proton Gas constant	m _p R	1.67 x 10 ^{-27 kg} 8.31 J mol ⁻¹ K ⁻¹
Avogadro's number Bohr magneton	N _A	6.02×10^{23}
Permeability of free space Stefan constant	$\mu_{ extsf{\tiny B}}$	9.27 x 10 ⁻²⁴ JT ⁻¹ 4π x 10 ⁻⁷ Hm ⁻¹
Atmospheric pressure	σ	5.67 x 10 ⁻⁸ Wm ⁻² K ⁻⁴ 1.01 x 10 ⁵ Nm ⁻²
Mass of 2 ⁴ He atom Mass of 2 ³ He atom		$6.65 \times 10^{-27} \text{ kg}$ $5.11 \times 10^{-27} \text{ kg}$
Volume of an ideal gas at STP		22.4 l mol ⁻¹