UNIVERSITY OF SWAZILAND MAIN EXAMINATION, FIRST SEMESTER 2007/8

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

TITLE OF PAPER: DIGITAL ELECTRONICS

COURSE CODE:

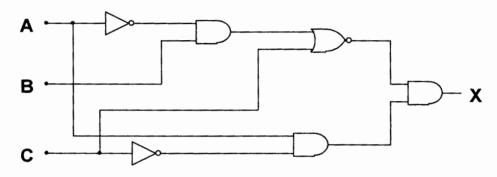
P411

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are six questions in this paper. Answer any FIVE questions.
- 2. Each question carries 20 marks.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR


THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

QUESTION ONE (20 marks)

(a) Implement the Boolean expression $W = X\overline{Y} + \overline{X}Y$ using only NOR gates.

(7 marks)

(b) Obtain the Boolean expression for the following combinational logic circuit, simplify the expression and implement it using a minimal number of AND, OR and NOT gates. (7 marks)

(c) Explain why NOR gates are considered as universal gates.

(6 marks)

QUESTION TWO (20 marks)

An engine monitoring system has 4 inbuilt sensors which together output a 4-bit binary number. You are to design a logic circuit which takes the 4-bit binary number and outputs a RED light warning light when the decimal equivalent of the binary number is 0 to 3 and 12 to 15, a GREEN light when the value is 8 to 10 and an AMBER light when the binary value is 3 to 7 and 11 to 13.

(a) Draw up the truth table.

(4 marks)

(b) Implement the truth table using a minimal number of AND, OR and NOT gates.

(10 marks)

(c) Implement the table using 16 to 1 multiplexers.

(4 marks)

(d) Comment on the two methods of implementation.

(2 marks)

QUESTION TRHEE (20 marks)

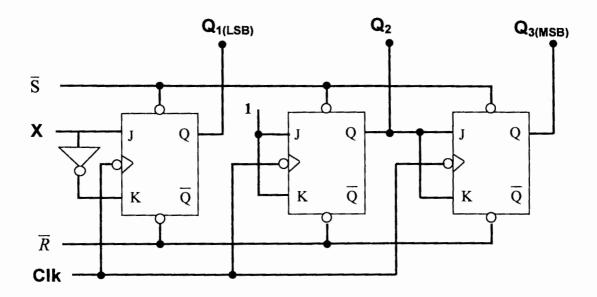
- (a) Explain how a 4-input multiplexer can be used as a universal 2-input logic gate. Are there any new gates not ordinarily implementable with one standard gate element? If so which ones are they?

 (7 marks)
- (b) Minimize the following Boolean expression and show how a hazard-free implementation may be obtained.

$$F = \overline{(AB)} \oplus (\overline{AC}) + \overline{C} \oplus BD$$

(7marks)

(c) Design a circuit using a ROM which takes a 3-bit binary number and outputs a binary value equal to the sum of this number and its square i.e. number + number².


(6 marks)

QUESTION FOUR (20 marks)

- (a) Describe the operation of the 3 flip-flops in the sequential circuit below. The input **X** can be either 0 or 1. (5 marks)
- (b) Draw the transition tables and the state diagrams for X = 0 and for X = 1.

 (12 marks)
- (c) Comment on the counting sequences in the two cases X = 0 and X = 1.

 (3 marks)

QUESTION FIVE (20 marks)

(a) Draw a logic gate level diagram of a clocked, level triggered D-Type flip-flop.

(2 marks)

(b) Show how D-Type flip-flops and any other circuit components can be used to realize:

(i) A 4-bit serial-to-parallel converter.

(2 marks)

(ii) A 4-bit parallel-to-serial converter.

(6 marks)

(c) A synchronous 3-bit binary counter progresses through the sequence:

000, 010, 100, 110, 001, 011, 101, 111, and repeats.

Design and implement this counter with a minimal number of D-Type flip-flops and logic gates.

(10 marks)

QUESTION SIX (20 marks)

- (a) Briefly describe the functional differences between RAMs, ROMs and Flash Memories.

 (6 marks)
- (b) Show how a 128k x 8 RAM can be built using 64k x 4 RAM chips. (6 marks)
- (c) How would you electronically add two 4-bit numbers? Illustrate your answer with an appropriate logic diagram. (5 marks)
- (d) Explain what you understand by each of the following: parity generator, ring counter, decoder.

 (3 marks)