UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2007/2008

TITLE OF PAPER : ELECTRONICS II

COURSE NUMBER : P312

TIME ALLOWED

: THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE

SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION 1

(a) Using an op-amp, design a circuit which corresponds to the following relationship between the input and output voltage, v_{in} and v_{out} .

$$v_{out} = -75 \int v_{in} dt$$

Choose suitable values of R and C.

(7 marks)

- (b) (i) Draw a schematic diagram of an ideal operational adder with three inputs V_1 , V_2 and V_3 . Write an expression for the output voltage. (5 marks)
 - (ii) Calculate the output voltage of the adder given that the voltages V_1 , V_2 and V_3 are each applied via the input resistors R_1 , R_2 and R_3 respectively. Let $V_1 = 1V$, $V_2 = -1V$, $V_3 = 2V$ and $R_1 = R_2 = R_3 = R_f = 100k\Omega$. (2 marks)
- (c) Calculate v_0 as a function of time for an op-amp differentiator given that $v_{in} = A \sin \omega t$, where A = 500 mV, $\omega = 100$ rad.s⁻¹, $C_{in} = 0.1$ μF and $R_f = 200$ k Ω . (6 marks)
 - (ii) Sketch v_{in} and v_{out} , as a function of time. Label the graphs fully. (5 marks)

- (a) An RLC bandpass filter is to be designed using a 10 mH inductor whose resistance is 75 Ω . The centre frequency of the filter is to be 25 kHz.
 - (i) What value of capacitance should be used? (3 marks)
 - (ii) If the bandwidth of the filter is to be made less than 2500 Hz, what is the quality factor? (3 marks)
- (b) (i) Derive a general expression for the high-pass filter shown in Fig. 2.1, in terms of the frequency, f and the cut-off frequency f_{co} .

(7 marks)

(ii) Calculate the cut-off frequency in Hertz.

(2 marks)

(iii) Find the magnitude of v_{out} when v_{in} has a frequency of 15 kHz, 40 kHz and 100 kHz. (10 marks)

(a) What is meant by inverse feedback?

(2 marks)

- (b) (i) With the aid of a diagram, derive a general expression relating the gain with feedback, A_f of an amplifier to the open loop gain A. Distinguish between the cases of negative and positive feedback. (8 marks)
 - (ii) Explain what the amplifier performance depends on when the feedback is negative and the loop gain is large. (3 marks)
- (c) A wide-band amplifier has a gain of -1000 without feedback and -20 with negative feedback. Find:
 - (i) the feedback factor, β

(4 marks)

(ii) the percentage reduction in gain with feedback if the gain without feedback falls by 40%. (8 marks)

- (a) (i) State the Barkhauszen condition required for sinusoidal oscillations to be sustained. (2 marks)
 - (ii) A Wien bridge oscillator is made using bipolar junction transistors. Draw the circuit diagram of this type of oscillator and label it. (4 marks)
 - (iii) The Wien Bridge network shown in Fig. 4.1 is used to build a frequency-dependent sinusoidal oscillator. Describe the principle of operation of this oscillator. Mention the distinctive benefits of using this type of oscillator.

 (10 marks)
- (b) (i) Explain why the amplifier used in a phase shift oscillator which utilises an RC ladder network must have a minimum gain of 29. (3 marks)
 - (ii) A phase shift oscillator has a variable capacitor ranging from 0.01 μ F to 1 μ F and a resistor R = 2 k Ω . Find the frequency range of the oscillator. (6 marks)

Fig. 4.1

- (a) Fig. 5.1 shows a circuit consisting of a signal source. The source has an internal resistance $R_s = 1 \text{ k}\Omega$ and generates a voltage V_s . It is connected to a voltage amplifier with an input resistance $R_i = 1 \text{ k}\Omega$
 - (i) Determine the relationship between V_s and V_{in}. Comment on the relationship.
 (3 marks)
 - (ii) With the aid of a circuit diagram and mathematical analysis, determine the relationship between V_s and V_{in} when an emitter follower is connected as an interface between the signal source and the amplifier. Comment on the effect of the follower on voltage transfer. (7 marks)
- (b) An operational amplifier utilises high current gain composite transistors in the gain stage. Demonstrate that the current gain of a Darlington pair consisting of composite transistors T_1 and T_2 of current gain h_{fe1} and h_{fe2} is given by

$$h_{fe} = h_{fe1} \times h_{fe2}$$
 (5 marks)

(c) An amplifier has a voltage gain of -1000. If 3/100 of the output voltage is applied as negative feedback, calculate the change in overall gain if the gain without feedback falls by 50%. (10 marks)

Fig. 5.1