UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION:

DECEMBER 2007

TITLE OF PAPER : ELECTRONICS I

COURSE NUMBER :

P311

TIME ALLOWED

THREE HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

- (a) With the aid of examples, explain the meaning of the following terms:
 - (i) majority carriers;

(2 marks)

(ii) minority carriers.

(2 marks)

(b) A low-power diode has the current-voltage characteristic given by the figures in the table below.

Forward voltage (V)	0	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
Forward current (mA)	0	1	5	28	65	120	175	240	330

The diode is connected in the circuit shown in Fig. 1.1.

(i) Draw the I-V characteristics of the diode;

(4 marks)

(ii) Determine the current flowing in the diode;

(2 marks)

(iii) Calculate the value of the load resister R_L

(2 marks)

(iv) Calculate the power dissipated in both the diode and the load resistor;

(4 marks)

- (c) A Zener diode regulator circuit is to provide a 24 V supply to a variable load. The input voltage is 30 V and a 24 V, 400 mW Zener diode is to be used. Calculate:
 - (i) the series resistance R_1 required and

(4 marks)

(ii) the diode current when the load resistance is 2000 Ω .

(3 marks)

100 µA

(d) Fig. 1.2 shows the output characteristics of a transistor. Is the device n-p-n or p-n-p? Give reasons for your answer. (2 marks)

80 µA 60 µA 40 µA 20 µA

 $= 120 \mu A$

Fig. 1.1

Fig. 1.2 Collector-emitter voltage V_{CE} (V)

(a) Draw the block diagram of an n-p-n transistor with its base-emitter junction forward biased and its collector-base junction reverse biased. Mark on the diagram the directions of the base current, the electrons in the collector region, and the holes in the emitter region.

(3 marks)

- (b) In Fig. 2.1, $V_{CC} = 12 \text{ V}$, $I_C = 2\text{mA}$ and $V_{BE} = 0.65 \text{ V}$.
 - (i) Calculate R_3 when 1/10th of the supply voltage appears across R_3 ; (2 marks)
 - (ii) Calculate R_L , when $V_{CE} = V_{CC}/2$; (2 marks)
 - (iii) Calculate I_B when $h_{FE} = 100$ (2 marks)
 - (iv) Calculate R_2 when $I_{R2} = 10I_B$ (4 marks)
- (c) Draw the load line for a d.c. load of 400 Ω on the output characteristics given in Fig. 2.2. The operating point is at $I_B = 150 \,\mu\text{A}$ and the supply voltage is 20 V. (Note: Use the enlarged version of Fig. 2.2 given on page 7to draw the loadline).

(3 marks)

- (ii) Calculate V_E , V_{CE} and collector-to-earth voltage when the emitter resistance is 100 Ω . (4 marks)
- (iii) Determine the peak-to-peak output voltage when a sinusoidal voltage varies the base current by \pm 50 μ A. (5 marks)

Fig. 2.1

Fig. 2.2

- (a) With the aid of a diagram, describe the principle of operation of an n-channel JFET.

 (8 marks)
- (b) The drain-source voltage of a JFET is increased from 6 V to 7 V. The resulting increase in the drain current is 0.1 mA. Calculate the output resistance of the FET. Assume that there is zero change in the value of the gate-source voltage. (3 marks)
- (c) Figure 3.1 shows both the mutual and drain characteristics of an n-channel JFET.
 - (i) Assuming that $V_{DD}=20$ V, draw the load line for $R_L=2000$ Ω on the drain characteristics and select the operating point $V_{GS}=-2$ V. (Note: Use the enlarged version of Fig. 3.1 given on page 8 to draw the loadline). (4 marks)
 - (ii) Determine from the drain characteristics the mutual conductance of the device when V_{GS} varies between the limits -1V and -3 V; (4 marks)
 - (iii) Calculate the voltage gain from the load line; (4 marks)
 - (iv) Calculate the theoretical voltage gain of a common source amplifier build using the JFET represented by the characteristics shown in Fig. 3.1. (2 marks)

Fig. 3.1

- (a) Explain, briefly, why a p-n junction diode acts as a rectifier. (2 marks)
- (b) How does the reverse saturation current of a p-n junction diode vary with temperature? (4 marks)
- (c) The input transformer of a full-wave rectifier (Fig. 4.1) has a turns ratio of 9.58:1. The r.m.s. voltage at the secondary is 24 V. Calculate:
 - (i) the r.m.s. input voltage; (4 marks)
 - (ii) the peak current flowing in the 200 Ω load; (3 marks)
 - (iii) the d.c. current in the 200 Ω load. (4 marks)
- (d) A Zener diode stabilising circuit has an input voltage of 18 V and a diode current of 8 mA to give 10 V across the load of 1200 Ω . Calculate
 - (i) the value of the series resistor; (4 marks)
 - (ii) the diode current when the load resistance is 1000Ω . (4 marks)

Assume that D_1 and D_2 represent silicon diodes.

Fig. 4.1

(a) What is meant by hybrid parameters?

(3 marks)

- (b) Consider a bipolar junction transistor with the following h-parameters: $h_{oe} = 6 \times 10^{-5} \text{S}$, $h_{ie} = 1.2 \text{ k}\Omega$, and $h_{fe} = 150$. The transistor is used to build an amplifier with a collector resistance of 2 k Ω .
 - (i) Draw a detailed equivalent circuit of this amplifier and label it; (4 marks)
 - (ii) Calculate the voltage gain of the amplifier when h_{ce} is neglected; (3 marks)
 - (iii) Calculate the voltage gain when h_{∞} is taken into account. (4 marks)
- (c) The application of a signal voltage of 7.5 mV peak between the base and emitter terminals of an n-p-n transistor causes the emitter current to vary by \pm 0.5 mA about its d.c. value.
 - (i) Calculate the a.c. voltage developed across a 1.2 k Ω collector resistor when the common-base current gain, $\alpha = 0.99$; (3 marks)
 - (ii) Calculate the voltage gain of the circuit.

(2 marks)

- (d) An audio-frequency amplifier uses a FET with $r_{ds} = 10 \text{ k}\Omega$ and $g_m = 5 \text{ ms}$. What value of drain load resistor is needed to give a voltage gain of -40? (3 marks)
- (e) Explain what is wrong with the following statement. An n-p-n transistor is operated with its base-emitterjunction forward biased and its collector-base junction reverse biased. When the base potential is made more negative, the collector current is reduced in value.

(3 marks)

USE THE GRAPH BELOW TO ANSWER QUESTION 2 (c)(i)

(An enlarged version of Fig. 2.2)

NOTE: This graph should be handed in together with the answer book.

CANDIDATE'S EXAMINATION NUMBER.....

USE THE GRAPH BELOW TO ANSWER QUESTION 3 (c)(i)

(An enlarged version of Fig. 3.1)

NOTE: This graph should be handed in together with the answer book.