UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2007/2008

TITLE OF PAPER : MATHEMATICAL METHODS FOR

PHYSICISTS

COURSE NUMBER : P272

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

- (a) Given P(35, 230°, -7) in a cylindrical coordinate system, find its Cartesian and spherical coordinates. (5 marks)
- (b) Given a scalar function f in Cartesian system as $f = x^2 + 6y$,
 - (i) find $\vec{\nabla} f$ at the point (x = 1, y = 6, z = 0), (3 marks)
 - (ii) find the directional derivative at the same point along the direction of $\vec{e}_x \ 3 + \vec{e}_y \ 4 \quad . \tag{3 marks}$
- (c) Given $\vec{F} = \vec{e}_x \ y^2 + \vec{e}_y \ 5x \ y + \vec{e}_z \ 4z$, evaluate the value of the line integral $\int_I \vec{F} \cdot d\vec{l}$
 - (i) if L: the straight line segment from (0,0) to (1,1) on z=0 plane, (5 marks)
 - (ii) if L is a parabolic line segment of $y = x^2$ from (0,0) to (1,1) on z = 0 plane, (6 marks)
 - (iii) find $\vec{\nabla} \times \vec{F}$ and comment on whether or not the given \vec{F} is a conservative vector field . (3 marks)

Question two

Given $\vec{F} = \vec{e}_r r^3 + \vec{e}_\theta r^3 \sin(\phi) + \vec{e}_\phi r^3 \cos(\theta)$,

(a) evaluate the value of the closed surface integral $\iint_S \vec{F} \cdot d\vec{s}$ if S: the closed surface of a sphere of a radius 5 and centred at the origin, i.e.,

$$d\vec{s} = \vec{e}_r r^2 \sin(\theta) d\theta d\phi$$
 with $r = 5$, (9 marks)

- (b) (i) find $\vec{\nabla} \cdot \vec{F}$, (5 marks)
 - (ii) find the value of the volume integral $\iiint_V (\vec{\nabla} \cdot \vec{F}) dv$ where V is the volume enclosed by the given closed surface in (a), i.e.,

$$dv = r^2 \sin(\theta) dr d\theta d\phi$$
, $0 \le r \le 5$, $0 \le \theta \le \pi$ and

 $0 \le \phi \le 2\pi$. Compare the result here with that obtained in (a) and make brief comment about the Divergence Theorem. (11 marks)

Question three

(a) Given the following partial differential equation as

$$\frac{\partial^2 f(\rho,\phi)}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial f(\rho,\phi)}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 f(\rho,\phi)}{\partial \phi^2} = \mathbf{0} .$$

Set $f(\rho, \phi) = F(\rho) G(\phi)$ and use the separation of variables scheme to break the given partial differential equation into two ordinary differential equations .(6 marks)

(b) Given the following differential equation as:

$$(1-x^2) \frac{d^2 y(x)}{dx^2} - 2x \frac{dy(x)}{dx} + 30 y(x) = 0$$

utilize the power series method, i.e., setting $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$,

- (i) write down the indicial equations and find the values of s and also possibly the value of a_1 , (6 marks)
- (ii) write down the recurrence relation. For each possible values of s found in (b)

 (i), set $a_0 = 1$ and use the recurrence relation to calculate the values of a_n up to the value of a_5 ,

 (11 marks)
- (iii) write down the general solution of the given differential equation. (2 marks)

Question four

(a) An elastic string of length **8** is fixed at its two ends, i.e., at x = 0 and x = 8.

Given one-dimensional wave equation governing the transverse deflection of the string u(x,t) as:

$$\frac{\partial^2 u(x,t)}{\partial t^2} = 4 \frac{\partial^2 u(x,t)}{\partial x^2}$$

- (i) show that a solution of this form $u(x, t) = \sum_{n=1}^{\infty} E_n \sin(\frac{n\pi x}{8}) \cos(\frac{n\pi t}{4})$ where E_n is an arbitrary constant satisfying two fixed end conditions as well as zero initial speed condition, (6 marks)
- (ii) if the initial position of the string, i.e., u(x, 0), is given as

$$u(x,0) = \begin{cases} \frac{5}{3}x & \text{if } 0 \le x \le 3\\ -x+8 & \text{if } 3 \le x \le 8 \end{cases}$$

find E_{n} in terms of n and calculate the values of E_{1} , E_{2} and E_{3} .

(hint:
$$\int_{x=0}^{L} \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{L}{2} & \text{if } n = m \end{cases}$$
 (10 marks)

(b) Given a non-homogeneous differential equation as

$$\frac{d^2 x(t)}{d t^2} - 2 \frac{d x(t)}{d t} + 3 x(t) = 5 \cos(3t)$$
, set the particular solution of x(t) as

 $k_1 \cos(3t) + k_2 \sin(3t)$ and determine the values of k_1 and k_2 . (9 marks)

Question five

Given the following equations for coupled oscillator system as:

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -11 \ x_1(t) + 9 \ x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 3 \ x_1(t) - 5 \ x_2(t) \end{cases}$$

(a) set $x_1(t) = X_1 e^{i\omega t}$ and $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation $AX = -\omega^2 X$ where

$$A = \begin{pmatrix} -11 & 9 \\ 3 & -5 \end{pmatrix} \quad and \quad X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 (3 marks)

- (b) find the eigenfrequencies ω of the given coupled system, (4 marks)
- (c) find the eigenvectors X of the given coupled system corresponding to each eigenfrequencies found in (a), (5 marks)
- (d) (i) write down the general solutions for $x_1(t)$ and $x_2(t)$, (3 marks)
 - (ii) if initially their positions are $x_1(0) = 0$ and $x_2(0) = 3$ and their speeds are

zero, i.e.,
$$\frac{dx_1(t)}{dt}\Big|_{t=0} = \frac{dx_2(t)}{dt}\Big|_{t=0} = 0$$
, determine the values of the

arbitrary constants in (c) (i) and thus find the specific solution. (10 marks)

Useful informations

The transformations between rectangular and spherical coordinate systems are:

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin s \phi \\ z = r \cos \theta \end{cases} \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} \\ \phi = \tan^{-1} \frac{y}{x} \end{cases}$$
The transformations between rectangular and evaluations

The transformations between rectangular and cylindrical coordinate systems are:

The transformations between rectangular and cylindrical coordinate systems are:
$$\begin{cases} x = \rho \cos \phi \\ y = \rho \sin \phi \\ z = z \end{cases} \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1} \frac{y}{x} \\ z = z \end{cases}$$

$$\vec{\nabla} f = \vec{e}_1 \frac{1}{h_1} \frac{\partial f}{\partial u_1} + \vec{e}_2 \frac{1}{h_2} \frac{\partial f}{\partial u_2} + \vec{e}_3 \frac{1}{h_3} \frac{\partial f}{\partial u_3} \\ \vec{\nabla} \cdot \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_1} + \frac{\partial (F_2 h_1 h_3)}{\partial u_2} + \frac{\partial (F_3 h_1 h_2)}{\partial u_3} \right)$$

$$\vec{\nabla} \times \vec{F} = \frac{\vec{e}_1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial u_2} - \frac{\partial (F_2 h_2)}{\partial u_3} \right) + \frac{\vec{e}_2}{h_1 h_3} \left(\frac{\partial (F_1 h_1)}{\partial u_3} - \frac{\partial (F_3 h_3)}{\partial u_1} \right) + \frac{\vec{e}_3}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial u_1} - \frac{\partial (F_1 h_1)}{\partial u_2} \right)$$
where $\vec{F} = \vec{e}_1 F_1 + \vec{e}_2 F_2 + \vec{e}_3 F_3$ and
$$(u_1, u_2, u_3) \quad \text{represents} \quad (x, y, z) \quad \text{for rectangular coordinate system}$$

$$represents \quad (\rho, \phi, \phi) \quad \text{for spherical coordinate system}$$

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) \quad \text{represents} \quad (\vec{e}_x, \vec{e}_y, \vec{e}_z) \quad \text{for rectangular coordinate system}$$

$$represents \quad (\vec{e}_\rho, \vec{e}_\theta, \vec{e}_\theta) \quad \text{for spherical coordinate system}$$

$$represents \quad (h_1, h_2, h_3) \quad \text{represents} \quad (1, 1, 1) \quad \text{for rectangular coordinate system}$$

$$represents \quad (1, \rho, 1) \quad \text{for cylindrical coordinate system}$$

$$represents \quad (1, r, r \sin \theta) \quad \text{for spherical coordinate system}$$