UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION:

MAY 2008

TITLE OF PAPER : THERMODYNAMICS

COURSE NUMBER

P242

:

TIME ALLOWED :

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE

SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

INFORMATION

Universal gas constant = $8.31 \text{ J mol}^{-1}\text{K}^{-1}$

Specific heat of water = $4190 \text{ J kg}^{-1}\text{K}^{-1}$

Density of water $= 10^3 \text{ kgm}^{-3}$

Specific heat of iron = $448 \text{ J kg}^{-1}\text{K}^{-1}$

Avogadro's number = 6.02×10^{23} molecules.mol⁻¹

Boltzmann constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

Stefan-Boltzmann constant = $5.67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4}$

1 atmosphere = $1.013 \times 10^5 \text{Nm}^{-2}$

Thermal conductivity of air $= 0.0234 \text{ Wm}^{-1}\text{K}^{-1}$

Thermal conductivity of glass= 0.8 Wm⁻¹K⁻¹

(a) Consider a conductor of unknown thermal conductivity. With the aid of a diagram and a suitable equation, explain how you would measure the thermal conductivity.

(10 marks)

- (b) Derive an expression for the radial rate of heat flow through a substance between two concentric spheres. The inner sphere has radius r_1 and the outer sphere has radius r_2 . The inside is maintained at a temperature T_1 and the outside is at a temperature T_2 . The thermal conductivity of the substance is k. (7 marks)
- (c) A Thermopane window of area 6.0 cm² is constructed of two layers of glass, each 4.0 mm thick separated by an air space of 5.0 mm. If the inside is at 20 °C and the outside is at -30°C, how much heat is lost through the window per second? (4 marks)
- (d) A steam pipe has an outer radius of 10 cm and a length of 4.0 m. The surface temperature of the pipe is 95 °C in a room at 23 °C. Assuming an emissivity of 0.80, determine the rate of heat loss in kJ/s due to radiation. (4 marks)

- (a) An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m³ to 3.00 m³ and 12.5 kJ of thermal energy is transferred to the gas, find:
 - (i) the change in its internal energy and

(4 marks)

(ii) its final temperature

(3 marks)

(b) Calculate the mean free path and collision frequency for nitrogen molecules at 20.0 °C and 1.00 atm. Assume a molecular diameter of 2.00 X 10⁻¹⁰m. (7 marks)

[*Hint*: The average speed of a nitrogen molecule at 20 °C is about 511 ms⁻¹].

(c) With the aid of the equation for N_{ν} below, show that the most probable speed for a gas molecule is $1.73(kT/m)^{-1/2}$ Note that the most probable speed corresponds to the point where the slope of the speed distribution curve, dN_{ν}/dv , is zero. (7 marks)

$$N_{v} = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^{2} \exp\left(\frac{-mv^{2}}{2kT}\right)$$

[*Hint*:
$$\int_{0}^{\infty} v^{4} \exp(-\lambda v^{2}) dv = \frac{3}{8} \sqrt{\frac{\pi}{\lambda^{2}}}$$
]

(d) The constant b that appears in van der Waals' equation of state for oxygen is measured to be 31.8 cm³/mol. Assuming a spherical shape, estimate the diameter of the molecule.

(4 marks)

OUESTION 3

(a) A cylinder containing n mol of an ideal gas undergoes a reversible adiabatic process. Show that the work done is

$$W = \left(\frac{1}{\gamma - 1}\right) \left(p_i V_i - p_f V_f\right)$$

where i and f represent the initial and final stages, respectively. (6 marks)

- (b) One of the most efficient engines ever built (42%) operates between 430 °C and 1870 °C.
 - (i) What is the maximum theoretical efficiency? (3 marks)
 - (ii) How much power does the engine deliver if it absorbs 1.4 X 10⁵ J of thermal energy each second? (3 marks)
- (c) Air in the cylinder of a diesel engine at 20.0 °C is compressed from an initial pressure of 1.00 atm and volume of 800.0 cm³ to a volume of 60.0 cm³. Assuming that air behaves as an ideal gas ($\gamma = 1.40$) and that the compression is adiabatic and reversible, find the final pressure and temperature. (7 marks)
- (d) During the compression stroke of a certain gasoline engine, the pressure increases from 1.00 atm to 20.0 atm. Assuming that the process is adiabatic and reversible and the gas is ideal with $\gamma = 1.40$, by what factor does the temperature change? (6 marks)

- (a) With the aid of the pV diagram shown in Fig. 4.1 discuss, briefly, the principle of operation of a commercial refrigerator. (8 marks)
- (b) An ideal refrigerator is equivalent to a Carnot engine running in reverse, that is, heat Q_c is absorbed from a cold reservoir and heat Q_h is rejected to a hot reservoir. With reference to the Carnot cycle shown in Fig. 4.2, derive the expression below for the coefficient of performance, COP of an ideal refrigerator

$$COP = \frac{T_c}{T_h - T_c}$$
 (13 marks)

- (c) A refrigerator has a coefficient of performance equal to 5. If the refrigerator absorbs 120 J of thermal energy from a cold reservoir in each cycle, find:
 - (i) the work done in each cycle and (2 marks)
 - (ii) the thermal energy expelled to the hot reservoir. (2 marks)

 $\begin{array}{c|c}
A & Q_h \\
W & T_h \\
D & C & T_c
\end{array}$

Fig. 4.2

- (a) What is meant by the entropy of a system? (2 marks)
- (b) There are four points to note about entropy change. Mention them. (4 marks)
- (c) State the second law of thermodynamics using the concept of entropy. Explain, briefly, what it means in practice. (4 marks)
- (d) A 1.0-kg iron horseshoe is taken from a furnace at 900 °C and dropped into 4.0 kg of water at 10 °C. If no heat is lost to the surroundings, determine the following:
 - (i) the equilibrium temperature after immersing the iron into the water;

(7 marks)

(ii) the change in entropy of the water and the iron;

(6 marks)

(iii) the total entropy change.

(2 marks)