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SECTION A
(Written Section)
Q.1.(a) A multiple integral of the form I = {[f(x,y) p(x, y)dxdy where the region
R

R={(x,y)la<x<b,c<y<d}, can be calculated by use of Monte Carlo method and
the algorithm for the estimation of the integral is
1= F e,y ol )
i=1

Here n random numbers for x; and y; are generated independently in the interval
as<x<bandc<y<d.

(i) Explain what you understand by random numbers? [2]
(if) Write a psuedo code for calculating /. [5]

(b) A plane lamina is defined to be a thin sheet of continuously distributed mass.
if p(x,y) is the function describing the density of a lamina having a shape of a region R
in the xy-plane, then the center of mass of the lamina ( x, ¥ ) is defined by

[ x plx, y)dxdy [y plx,y)dxdy
x=24 ’ 7= R
{] A(x, y)dxdy {] olx, y)dxdy
R R

Write a program and execute it to calculate ( x, ¥y ) using Monte-Carlo method with the

density function p(x, y) = e **r") and the region described by 0< x <1.0and 0< y <1.0.
Use 1000 random numbers. [8]

Q.2. Under the Block-Gruneissen approximation for the resistance in a mono-valent metal,
integrals of the following form need to be calculated;

. e X
BGintegral= ! e dx

To avoid the singularity at x=0, assume lower {imit of integration to be 0.001.

Write a program to calculate the integral using Simpson Rule for =2 convergent to a

precision of 0.001. This can be checked by initial estimation for some N steps and then

~ with N+2 steps. If the difference between two estimates of the integral is small

(in this case less than 0.001) then the integral is convergent. [15]
You may begin with N > 10.

Note: Use the algorithm given in the Appendix.

Q.3. A pendulum confined to a plane of length L and a point mass m is acted upon by
~ driving force £, =f, cos(a,t) and a resistive force f, = kv = —kLZ—':,wherekreﬂects
the strength of resistive force.

Writing q=% and b=£°zandchoosingL/g=1.0,weget



as d9 . .
T + QE +sin$ = boos(a,t)
The second order differential equation is equivalent to two first order differential equations as
given below: '

gﬁ:m
dt

Assume initial boundary conditions : Atf{=0, w=0and@=-mr .

Wirite a procedure using the Euler method to calculate w(t) and 8(t) in the interval -n<@<w
for any values of the parameters oo , q and b. [15]
Note: Use the algorithm given in the Appendix.

SECTION B
(Practical Section)

Q.4. Consider the random walk problem in two dimensions on a square lattice. The walk starts
at the origin which is at a lattice point approximately at the centre of the lattice and assume
length of each step to be of one unit . Each point on the lattice is recognized by the coordinates
(x,y) from the origin. At a distance d=sqrt{>+y?) of 25 units, in any direction, there is a point
of no retum , that is, the walk terminates as soon as one reaches a distance of 25 units or more.

(a)Write a program and execute it to find the number of steps a walker wouid [25]
need to reach the point of no retum starting from (x=0,y=0).

Note: Consider a 200 x 200 matrix to begin with and if need be, increase the matrix dimension.

(b) Convert the program above into a procedure that can work for any matrix size (n X n)

and any value of d for the point of no retum. The output should have the number of lattice
points that defines the square lattice, value of d for the point of no retum and the number steps
required to reach the point of no retum.

Execute the procedure for the problem in (a) above. [10]

Use the uniform random number generator in the range (0,1) available in Maple.

Q.5. The differential equation for a non-linear harmonic oscillator with force due to drag=d v(t),
with v(t) =—d—);—(:—) and extemal force = a cos(wi) is given by the equation

T g %) | w2 x(t) +quit)’ = acoswt)

where d=drag co-efficient, wy=strength of the linear term of the hammonic oscillator, g= strength
of the non-linear term of the harmonic oscillator.

Assume the initial conditions: Att=0, x(0)=0 and g)ég—)lh,,:ﬁ

(i) Taking the parameter values: wo=1, w=1, g=1, a=1 and d=1, solve the differential [51
equation numerically using the Maple commands for solving differential equations.



Plot x(t) vs t for t=0..200 with the style = point Comment.

Plot v(t) vs x(t) for t=0..200. Comment.

(ii) Repiace the vaiue a with a=5. Repeat the tasks of (i). Comment.
(iii) Consider new parameter values: a=1, d=0.05 and w=0.05.
Repeat the tasks of (i). Comment.

@@@@END OF EXAMINATION@Q@@@

APPENDIX

1. Solution of First Order Differential Equation with initial Conditions:
The equation is of the form Zx—y =f(x,y) with y(xg) = .

(i) Euler's Method:
Yin=Yi+thf(x;,y;) where h}= Xis1 = X

(it) Fourth Order RK-Method:
Yia=yi+ (ki +2ky+2k; + ky)/6

where
ki=hf(x,;,y)
kz=hf(x;+05h,y+0.5k;)
ks=hf(x+05h,y+05k;)

- k4=hf(x,+h,y,+k3) and h= Xiv1 — X;

2. Numerical Integration:

Simpson Rule:

[5]

[10]
[10]



