UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS.

MAIN EXAMINATION 2006/2007

TITLE OF PAPER: STATISTICAL PHYSICS & THERMODYNAMICS

COURSE NUMBER: P 461

TIME ALLOWED: THREE HOURS

THIS PAPER CONTAINS FIVE QUESTIONS. ANSWER ANY \underline{FOUR} QUESTIONS . ALL QUESTIONS CARRY EQUAL MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION ONE.

- (a) (i) Explain the difference between a **macrostate** and a **microstate** of a system of particles. (2 marks)
 - (ii) What is meant by <u>statistical weight</u> of a macrostate in a system of particles? (2 marks)
 - (iii) A classical system has 5 particles to be arranged in 3 energy levels.

 Using appropriate expression find the weights and hence the most probable distribution of these particles for the following cases:
 - 1. The energy levels are non-degenerate.
 - 2. The energy levels are doubly degenerate

(12 marks)

(b) (i) What is meant by Phase space?

(2 marks)

- (ii) Derive expressions for the volume element in phase space in terms of
 - 1. Momentum p
 - 2. Energy ϵ .

(3 + 4 marks)

QUESTION TWO.

(a) Derive the Fermi-Dirac distribution function for a system of fermions,

$$n_S = \frac{g_S}{e^{-(\alpha + \beta \epsilon_S)} + 1}$$
, where symbols have their usual meanings

(12 marks)

(b) (i) Given that the density of states for fermions is:

$$g(\varepsilon)d\varepsilon = \frac{4\pi V}{h^3}(2m)^{3/2}\varepsilon^{1/2}d\varepsilon$$

where symbols have their usual meanings, show that the Fermi energy of a system of fermions:

$$\varepsilon_F = \frac{h^2}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$$

(8 marks)

(ii) Calculate the Fermi energy of a metal having density 8.5x10² kg m⁻³ and atomic weight 40. (5 marks)

QUESTION THREE.

(a) The Maxwell-Boltzmann distribution function for a system of classical particles is given by:

$$n_s = g_s e^{\alpha + \beta \varepsilon_s}$$
,

where the symbols have their usual meanings. Such a system has 2000 particles distributed in three non-degenerate energy levels having energies 1 unit and 2 units and 3 units each. The total energy is 2600 units. Use the above distribution function to obtain the values of α and β of this system and hence find its probable configuration. Verify your answer numerically.

(15 marks)

(b) The differential form of Maxwell-Boltzmann distribution function in terms of the velocity v of the particles is given as:

$$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} v^2 dv$$

Use this expression to obtain:

- (i) The mean velocity
- (ii) The most probable velocity of the molecules of a classical gas.

[Note: see appendix for definite integrals]

(10 marks)

QUESTION FOUR.

(a) Use the Bose-Einstein distribution function of an assembly of identical non-interacting particles in thermal equilibrium to derive the Planck's radiation law for spectral distribution of energy radiated from a constant temperature enclosure.

(9 marks)

- (b) Obtain an expression for the total energy per unit volume emitted from the enclosure at temperature T. (5 marks)
- (c) (i) State briefly what is **Bose_Einstein condensation**. (3 marks)
 - (ii) The density of ideal gas consisting of particles having mass 6.65×10^{-27} kg is 1.17×10^{26} m⁻³.
 - 1. Calculate the Bose temperature T_B of the gas. (5 marks)
 - 2. What fraction of the particles will be in the ground state at a temperature of $0.1T_{\rm B}$. (3 marks)

Given:
$$N = 2.612V \left(\frac{2\pi mkT_B}{h^2}\right)^{3/2}$$

QUESTION FIVE.

(a) Derive the partition function of a classical gas:

$$Z = \frac{v}{h^3} (2\pi mkT)^{3/2}$$

(8 marks)

(b) Show that the pressure of the classical gas:

$$P = NkT \frac{\partial \ln Z}{\partial V}$$

Hence derive the ideal gas equation P V = N k T

(10 marks)

(c) Calculate the translational partition function of an hydrogen molecule confined to a volume of $100~{\rm cm}^3$ at $300~{\rm K}$.

(7 marks)

Appendix 1

Various definite integrals.

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{3} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{4} dx = \frac{3}{8a^{2}} \left(\frac{\pi}{a}\right)^{1/2}$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{5} dx = \frac{1}{a^{3}}$$

$$\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$\int_{0}^{\infty} x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$$

$$\int_{0}^{\infty} \frac{x^{4}e^{x}}{(e^{x} - 1)^{2}} dx = \frac{4\pi^{4}}{15}$$

$$\int_{0}^{\infty} \frac{x^{1/2}}{e^{x} - 1} dx = \frac{2.61\pi^{1/2}}{2}$$

Appendix 2

Physical Constants.

Quantity	symbol	value
Speed of light	С	3.00 x 10 ⁸ ms ⁻¹
Plank's constant	h	6.63 x 10 ⁻³⁴ J.s
Boltzmann constant	\mathbf{k}^{\cdot}	1.38 x 10 ⁻²³ JK ⁻¹
Electronic charge	е	1.61 x 10 ⁻¹⁹ C
Mass of electron	m_e	9.11 x 10 ⁻³¹ kg
Mass of proton	m_{p}	$1.67 \times 10^{-27 \text{ kg}}$
Gas constant	R	8.31 J mol ⁻¹ K ⁻¹
Avogadro's number	N_A	6.02×10^{23}
Bohr magneton	$\mu_{\scriptscriptstyle m B}$	9.27 x 10 ⁻²⁴ JT ⁻¹
Permeability of free space	μ_{o}	$4\pi \times 10^{-7} \text{Hm}^{-1}$
Stefan constant	σ	$5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$
Atmospheric pressure		1.01 x 10 ⁵ Nm ⁻²
Mass of 24 He atom		6.65 x 10 ⁻²⁷ kg
Mass of 2 ³ He atom		5.11 x 10 ⁻²⁷ kg
Volume of an ideal gas at STP		22.4 l mol ⁻¹