UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS.

SUPPLEMENTARY EXAMINATION 2006/2007.

TITLE OF PAPER: SOLID STATE PHYSICS II

COURSE NUMBER: P422

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: ANSWER ANY FOUR QUESTIONS.

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT

HAND MARGIN

THIS PAPER HAS 7 PAGES INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question One.

(a) Derive the dispersion relation for a dilute gas stating clearly the assumptions made.

(12 marks)

- (b) (i) Sketch graphs of refractive index versus frequency and extinction coefficient versus frequency of the dilute gas.
 - (ii) explain anomalous dispersion.

(6 marks)

- (c) A gas at room temperature has number density of 10^{17} cm⁻³, resonance frequency of $3x10^{15}$ Hz and a band width of 10^{11} Hz. Calculate:
 - (i) the plasma frequency
 - (ii) the maximum value of the refractive index.

(7 marks)

[assume the damping constant = 0 and $\omega_0^2 - \omega^2 = 2 \omega_0 (\omega_0 - \omega_0)$]

Question Two.

(a) With the help of band diagrams discuss briefly the quantum process of photoelectric emission in materials with particular reference to metals and semiconductors.

(9 marks)

(5 marks)

- (b) (i) Define quantum efficiency of a material (2 marks)
 - (ii) Explain why diamond is transparent to visible light given that it has a binding energy of 5.6 eV (6 marks)
- (c) The electron and hole concentrations in a semiconductor sample increases by 10¹⁵ cm⁻³ when irradiated with light.
 - (i) Calculate the change in conductivity of the sample.
 - (ii) number of photons falling on the sample per second. (3 marks)

[electron and hole mobilities of the sample are : $1350 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ and $480 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ respectively, carrier life time = 10^{-6} s]

Question Three.

(b) (i) Derive the classical Langevin equation for the diamagnetic susceptibility

$$\chi = -\frac{\mu_0 N Z e^2}{6m} \langle r^2 \rangle \tag{12 marks}$$

- (c) (i) Explain how conduction electrons cause magnetization in metals (4 marks)
 - (ii) Calculate the density of states corresponding to the Fermi energy of Lithium. (Fermi energy of lithium = 2.05 eV) (5 marks)
 - (iii) Use the result in (ii) to find the susceptibility of Lithium. (4 marks)

Question Four.

- (a) (i) The superconducting state of a material can be destroyed by the application of a critical magnetic field which is a function of temperature. Write down the equation relating the critical field and temperature stating what each term represent. (4 marks)
 - (ii) Sketch a graph of the critical field versus temperature in (i) above and comment. (4 marks)
 - (iii) By deriving appropriate expression for the change in entropy show that the super conducting phase is more ordered than the normal phase of a material.

(Given:
$$dG_S = -S_S dT + \frac{H}{4\pi} dH$$
, $dG_n = -S_n dT$) (5 marks)

- (b) (i) What is Meissner effect in a superconductor? (3 marks)
 - (ii) State the London equation in superconductors and show how it leads to Meissner effect. (5 marks)
 - (iii) It is known that an exponentially varying magnetic field can exist in a superconductor. Justify this statement mathematically. (4 marks)

Question Five.

- (a) (i) Define 'mobility' of a charge carrier. (2 marks)
 - (ii) With the help of a sketch explain the band diagram of an amorphous semiconductor. (6 marks)
 - (iii) Discuss briefly the four conductivity mechanisms in an amorphous semiconductor. (Derivation of equations not needed) (10 marks)
- (b) Discuss the main features observed in the thermal conductivity of amorphous materials. (7 marks)

PHYSICAL CONSTANTS

Quantity	Symbol	Value
Angstrom unit	Å	$1 \text{ Å} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$
Avogadro number	N	6.023×10^{23} /mol
Boltzmann constant	k	$8.620 \times 10^{-5} \text{ eV/K} = 1.381 \times 10^{-23} \text{ J/K}$
Electronic charge	q	$1.602 \times 10^{-19} \text{ C}$
Electron rest mass	m_a	$9.109 \times 10^{-31} \text{ kg}$
Electron volt	cV	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Gas constant	R	1.987 cal/mole-K
Permeability of free space	μ_o	$1.257 \times 10^{-6} \text{ H/m}$
Permittivity of free space	ε_v	$8.850 \times 10^{-12} \text{ F/m}$
Planck constant	h	$6.626 \times 10^{-34} \text{ J-s}$
Proton rest mass	m_p	$1.673 \times 10^{-27} \text{ kg}$
$h/2\pi$	ħ	$1.054 \times 10^{-34} \text{ J-s}$
Thermal voltage at 300 K	V_T	0.02586 V
Velocity of light in vacuum	C.	$2.998 \times 10^{10} \text{ cm/s}$
Wavelength of 1-eV quantum	λ	1.24 μm