UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

2006/2007 SUPPLEMENTARY EXAMINATION

Title of the Paper: **DIGITAL ELECTRONICS**Course Number: **P411**Time Allowed: **Three Hours**.

Instructions:

- 1. To answer, pick any five out of six questions in the following pages.
 - 2. Each question carriers 20 points.
- 3. This paper has 7 pages, including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1:

a: Transform the K-Map below into

(10 marks)

- (1). a Truth Table,
- (2). a function in the following format (a SOP): $F_1(B, C, D, E) = \sum (n1, n2, ---, nB, nC, ---, nF)_{hex}$
- (3). a function in the following format (a POS): $F_2(B, C, D, E) = \prod (n1, n2, ---, nB, nC, ---, nF)_{hex}$ The number in the above brackets must be hexadecimal.

b: Prove $F_1 = F_2$. (must have equations to support)

(10 marks)

DE				
BC	00	01	11	10
00	1	1		1
01		1	1	
11		1		
10	1	1		1

QUESTION 2:

Using the tabulation method, simplify the following Boolean function F into an SOP:

 $F(v, w, x, y, z) = \sum (0, 4, 9, B, D, F, 12, 13, 16, 17, 19, 1B, 1D, 1F)_{hex}$ (hex number in the brackets of the above function) (20 marks)

QUESTION 3:

a: With the help of a K-map, obtain the simplified expression of the Boolean Function below in both SOP and POS. (10 marks)

$$F(A,B,C,D,) = \overline{A}(\overline{BD} + CD + BC)$$
$$d(A,B,C,D) = A(CD + \overline{BD}) + \overline{A}B\overline{C}D$$

b: Implement the Boolean function,

$$F(A,B,C,D,E) = (ACD + E)(A + \overline{B}) + BC\overline{D}E$$
,

with only NOR gates and nothing but NOR gates. Complement inputs are available only at input terminals, nowhere else. The implement must have its function support. (10 marks)

ŝ

QUESTION 4:

a: Implement the following function with a multiplexer of 4-1 (must have this component) and other elementary gates. Assign xy as the address of the MUX. (10 marks)

$$F(v, w, x, y) = \sum (1, 3, 7, 8, 9, A, D, F)_{hex}$$
 (hex number in the brackets of the above function)

b: In the figure below is a micro-programmed sequencer (the circuit is not complete yet). In the ROM, there are fields in a byte: jumping address, mux select address, and sequence output, C. First, complete the circuit wiring to make the sequencer have a proper function as listed in the ROM table. Next, fine the sequence C that the processor runs through; the sequencer starts at address 0000 and finally jumps back to 0000.

			(10 marks)	
ROM	ROM contents			
addr	sel	jump	С	
0	1	x	A	
1	1	x	2	
2	0	A	4	
1 2 3 4 5 6 7	1	x	A 2 4 7 C F	
4	1	x	C	
5	1	x	F	
6	1	x	9	
7	0	x 0	4	
8	1	x	1	
8	1	x	3	
A B C D	0	Е	1 3 E 5	
В	1 👞	x	5	
C	1	x	D	
D	1	x	0	
E	0	6	0	
F	0	0	6	

QUESTION 5:

Design a sorting circuit for two 2-bit codes, B_1B_0 and A_1A_0 . Compare two codes to find out "B>A"; ie, F=1, when B>A. Design the circuit to fit in a PLA. Simplification is required. The circuit must have its function support. (hint, using logical inference, or an abridged truth table. A simplification identity $(X + \overline{X}Y) = X + Y$). (20 marks)

QUESTION 6:

Design, with D-ff's, a clocked sequencer to cycle repeatedly through the states: - - 0, 1, 3, 7, 5, 2, - - -. Not-used states must be properly treated. Obtain a state diagram, a state table, ff input functions, and finally a logic circuit. Does this sequencer need a hidden unit? (20 marks)