UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2006/07

TITLE OF THE PAPER:

QUANTUM MECHANICS-I

COURSE NUMBER : P342

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY <u>FOUR</u> OUT OF FIVE QUESTIONS.

- EACH QUESTION CARRIES <u>25</u> MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS **FIVE** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q.1.

(A) What is the de-Broglie wavelength of neutron with kinetic energy of 1.7 MeV? What is its velocity? Will such neutrons produce diffraction pattern In a crystal of lattice point distances of the order of 10⁻⁸ m?

[5]

- (B) Using the uncertainty relation, show that in a nucleus with the average potential energy $\langle U \rangle \ge 15$ Mev, the bound nucleon is confined within a sphere of radius $r_0 \ge 1.2 \times 10^{-15} \text{ m}.$ [4]
- [8] (C) Explain
 - (i) Parity.
 - (ii) Constant of motion in quantum mechanics.
 - (iii) Probability interpretation of wave function.
 - (iv) Complete set

(D) Show that
$$\Psi_k(x,t) = (Ae^{ikx} + Be^{-ikx})e^{-iE_kt/\hbar}$$
 [8]

is a solution of the one-dimensional time-dependent Schrödinger equation for a particle of mass m and energy E_k with potential V(x) = 0. Here A, B are constants and $k^2 = \frac{2mE_k}{\hbar^2}$. Show that the probability current corresponding to $\Psi_k(x,t)$ equals

$$-\frac{1}{\hbar^2}$$
 . Show that the probability current corresponding to $\Psi_k(x,t)$ eq

$$j(x,t) = \frac{k\hbar}{m}(|A|^2 - |B|^2).$$

What is the interpretation of this?

Note: For a one dimensional problem probability current $j(x,t) = \frac{\hbar}{2im} \left(\psi \cdot \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi}{\partial x} \right)$

Q.2. Consider the step potential

Consider a current of particles of mass m propagating from left to right of energy $E > V_0$.

Define
$$k_1 = \sqrt{\frac{2mE}{\hbar^2}}$$
 , $k_2 = \sqrt{\frac{2m(E-V)}{\hbar^2}}$

Then the general solutions for the regions 1 (x < 0) and 2(x > 0) are $\phi_1(x) = A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}$, $\phi_2(x) = A_2 e^{ik_2 x} + B_2 e^{-ik_2 x}$

$$\phi_1(x) = A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}$$
, $\phi_2(x) = A_2 e^{ik_2 x} + B_2 e^{-ik_2 x}$

(i) State the boundary conditions on the solutions.

(ii) Show that $B_2 = 0$ and $A_1 + B_1 = A_2$ [3]

(iii) Show that
$$\frac{B_1}{A_1} = \frac{k_1 - k_2}{k_1 + k_2}$$
 and $\frac{A_2}{A_1} = \frac{2k_1}{k_1 + k_2}$. [10]

[4]

(iv) Show that the probability current density

$$j(x) = \frac{\hbar}{2mi} \left[\phi^*(x) \frac{\partial \phi(x)}{\partial x} - \phi(x) \frac{\partial \phi^*(x)}{\partial x} \right] = \frac{\hbar k_2}{m} |A_2|^2$$
 [6]

(v) Do the solutions have any definite parity? [2]

Q.3. Verify that the two wave functions

we wave functions [8]
$$\phi_0(x) = \left(\frac{m\omega}{n\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

and

$$\phi_1(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} x \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

are solutions of the eigenvalue problem

$$\hat{H}\phi_n(x) = E_n\phi_n(x)$$
 with $\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$

- Determine E_n for each of them.
- [5] [2] (ii) What is the parity of each state.
- (iii) Determine the solutions $\phi_0(x,y,z)$ and $\phi_1(x,y,z)$ for the [10] Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] + \frac{m\omega^2}{2} \left[x^2 + y^2 + z^2 \right]$$

and E_n for each of them.

(A) show that

(i)
$$[f(\vec{r}), p_x] = i\hbar \frac{\partial}{\partial x} f(\vec{r})$$
 where $\vec{r} = \hat{i} x + \hat{j} y + \hat{k} z$. [3]

(ii)
$$[x, p_x^3] = 3i \hbar p_x^2$$
 [5]

(iii)
$$[L_{+}, L_{-}] = 2\hbar L_{z}$$
 [5]

where $L_{+} = L_{x} + iL_{y}$ and $L_{-} = L_{x} - iL_{y}$

(B) A particle is described by the wave function

$$\psi(x) = \left(\frac{\pi}{a}\right)^{-\frac{1}{4}} \quad \exp(-a \, x^2 \, / \, 2)$$

Show that
$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{2a}}$$
 [12]

Q.5.(A) Radial part of the Schrodinger equation for spherically symmetric potentials for I = 0 is given by the equation

$$\frac{d^{2}R}{dr^{2}} + \frac{2}{r}\frac{dR}{dr} + \frac{2m}{\hbar^{2}}[E - V(r)]R = 0$$

(i) Show that with
$$u(r)=rR(r)$$
, the above equation reduces to [5]
$$\frac{d^2u(r)}{dr^2} + \frac{2m}{\hbar^2}[E - V(r)]u(r) = 0$$

What are the boundary conditions on u(r) for bound states.

(ii) A spherical oscillator potential is given by

$$V(r) = \frac{1}{2}m\omega^2 r^2$$

- (a) Show that the reduced radial equation is identical [5] with one dimensional linear oscillator.
- (b) Assume that the lowest energy state is given by the [5] wave-function $A \exp(-\frac{1}{2}\xi^2)$ where $\xi = \sqrt{\frac{m\omega}{\hbar}} r$. Determine the energy E.
- (B) The Hamiltonian of a system with moment of inertia I is given by the expression

$$H = \frac{1}{2I_1} (L_x^2 + L_y^2) + \frac{1}{2I_3} L_z^2$$
(i) Show that [H, L²] = 0 and [H, L_z] = 0.

- [5]
- (ii) Find an expression for the eigenvalue of the Hamiltonian. [5] Eigen functions are $Y_i^m(\vartheta, \varphi)$. Here L is orbital angular momentum.

@@@@END OF EXAMINATION@@@@

APPENDIX:

Given: $\hbar = 1.0546 \times 10^{-34}$ Js , $c = \text{velocity of light} = 2.99792 \times 10^8 \text{ m s}^{-1}$ mass of neutron/proton = $1.6749 \times 10^{-27} \text{ kg}$, $k=1.3807 \times 10^{-23} \text{ JK}^{-1}$.

 $1ev=1.6022 \times 10^{-19} J.$

Useful Information:

[r_i , p_j] = $i\hbar \delta_j$ where r_i = (x, y, z) and p_i = (p_x , p_y , p_z), $[L_x, L_y] = i\hbar L_z$, $[L_y, L_z] = i\hbar L_x$, $[L_z, L_x] = i\hbar L_y$ where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_i^m(\vartheta,\varphi)$ are eigenfunctions of L^2 and L_z operators with the property

$$L^{2} Y_{\ell}^{m}(\vartheta, \varphi) = \ell(\ell+1) \hbar^{2} Y_{\ell}^{m}(\vartheta, \varphi)$$

$$L_{2} Y_{\ell}^{m}(\vartheta, \varphi) = m \hbar Y_{\ell}^{m}(\vartheta, \varphi)$$

Useful Integrals:

$$\int_{0}^{\infty} \exp(-t^{2}) dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} \exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$
with Re a > 0, n = 0,1,2.....

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$

$$\int \sin(mx)\sin(nx) dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$
$$\int \sin(mx)\cos(nx) dx = -\frac{1}{2} \left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)} \right]$$

 $\int_{-\infty}^{\infty} H_n(\xi) H_m(\xi) \exp(-\xi^2) d\xi = \pi^{\frac{1}{2}} 2^n n! \delta_{nm} \quad \text{where } H(\xi) \text{ are Hermite polynomials}$

$$\int_{0}^{\infty} t^{z-1} \exp(-kt) dt = k^{-z} \Gamma(z) \quad \text{Re } z > 0, \text{Re } k > 0.$$

$$\Gamma(n+1) = n! \quad \text{for } n = 1, 2, \dots \text{ and } \Gamma(1) = 1.$$

$$\int x^{n} e^{-m\alpha x} dx = \frac{\Gamma(n+1)}{(m\alpha)^{n+1}} \quad \text{for } m > 0 \quad \text{and } n \ge 0.$$

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation with respect to the parameter in the exponential, e.g.

$$\int_{a}^{b} dx \ x \exp(-\gamma x) = -\frac{\partial}{\partial \gamma} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and} \quad \int_{a}^{b} dx \ x^{2} \exp(-\gamma x) = \frac{\partial^{2}}{\partial \gamma^{2}} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and so on.}.$$