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Q.1.

(A) What is the de-Broglie wavelength of neutron with kinetic energy of

1.7 MeV? What is its velocity? Wiil such neutrons produce diffraction pattern

In a crystal of lattice point distances of the order of 10 m? (5]

{B) Using the uncertainty relation, show that in a nucleus with the average potential
energy <U> 2 15 Mey, the bound nucleon is confined within a sphere of radius

rp > 1.2x10% m. (4]
(C) Explain (8]
(i) Parity.

(ii) Constant of motion in quantum mechanics.
(iii) Probability interpretation of wave function.
(iv) Complete set

(D) Show that [8]
- —iE t/h
ij(x,t)=(Ae‘kx +Be zKX)e iE,t
is a solution of the one-dimensional time-dependent Schrodinger equation for a
particle of mass m and energy E. with potential V(x) = 0. Here A, B are constants

and k% = 2’:5 k . Show that the probability current corresponding to ¥, (x,7) equals

) kh 2 2
J(x,t) = —(|4]" - |B|").
m
What is the interpretation of this?

Note: For a one dimensional probiem probability current j{x,f)= Z%(W %%—w%y;—)

Q.2. Consider the step potential
V(x) = Vg x>0
=0 x<0

— Vo

1 2

0 X—>

Consider a current of particles of mass m propagating from left to right of
energy £ > Vp .

Define K, = _2_%12_1:'_ .k _-."Z"_thzl‘./l

Then the general solutions for the regions 1 ( x<0) and 2(x >0) are

g(X)=A " +B e | 4(x)=A,e"* +B, e
(i) State the boundary conditions on the solutions. [4]
(ii) Show that Bz =0 and A; + B; = Az . (3]
B _
(iii) Show that B _k-k and A = 2k . [10]

K, +k, A k+k,



(iv) Show that the probability current density

)= [¢( x) 2 2 L) (")] R a P

(v) Do the solutions have any definite parity ?

Q.3. Verify that the two wave functlons

mo\'* max?
xXy={—1{ expl—~
$o(x) [ m] p( % ]
1/4 2
mo 2mao maox
xy=|— X exp| —
wo=(m2) [ p[ Zh]
are solutions of the eigenvalue problem

Ag,(x)=E$,(x) with H=

and

B2 0* mo? 42
2m ox? 2

(i) Determine E, for each of them.
(li) What is the parity of each state.

(iii) Determine the solutions @, (x,y,z) and ¢ (x,y,z) for the

Hamiltonian
R 2 2 2 2
H=——h—— 62 o 62 +——-——[x +y +z]
2m| ox ay 52
and E, for each of them.
Q.4.

(A) show that
0 [f(f),p,]=ih§;f(?) where 7 =ix+jy+kz.

(i) [x, pl]=3inp2
ity [L, L. ]=2n1L,
where L =L +il, and L_=L,-iL,

(B) A particle is described by the wave function

W/
w(x)= (%) exp(-ax®/2)

Show that Ax = ,/<x2>—(x)2 =J;:5

(6]

(21

(8]

(5]
(2]
[10]

(3]

(5]
[5]

[12]

Q.5.(A) Radial part of the Schrodinger equation for spherically symmetric potentials

for I = 0 is given by the equation

dzR 2dR 2m
dr2 r dar

[E-V(r)J]R=0



(i) Show that with u(r)=r R(r), the above equation reduces to [5]
d?u(r) 2m
+—[E-V(r)Ju(r)=0
| prEcaRRY [ (r)ju(r)
What are the boundary conditions on u(r) for bound states.

(ii) A spherical oscillator potential is given by
V(r)= —;-ma;z r

(a) Show that the reduced radial equation is identical [5]
with one dimensional linear oscillator.

(b) Assume that the lowest energy state is given by the [5]
mo

wave-function Aexp(——;-f 2 ) where ¢ = = r.

Determine the energy E.

{(B) The Hamiltonian of a system with moment of inertia I is given by the
expression

1 1
H=——(L2+12 )+—12
2[,( X y) 21, z »
(i) Show that [H,121=0 and [H, L, ]=0. (51
(ii) Find an expression for the eigenvalue of the Hamiltonian. [5]

Eigen functions are Y," (#,¢) .
Here L is orbital angular momentum.

@@@@END OF EXAMINATION@O@O®@

APPENDIX:
Given: h=1.0546 x10"* Js , c¢ = velocity of light =2.99792 x 10° m s™
mass of neutron/proton = 1.6749 x 10% kg , k=1.3807x 102 JK* .

lev=1.6022 x 10°*° J.
Useful Information:

[A,CD]=[A,CID+C[A,D]
[AC,D]l=A[C,D]+[A,D]C

[ rn,p;]=ih & where ri=(x,y,z) and p;=(px,Py.,P:).:

[Le,L]=ib Ly, [L,,L,]=ih L, [L,, L] =ih L, where L=rxp ,

The functions Y,” ($, ¢ ) are eigenfunctions of L? and L, operators with the property
LY, (8.@) =LL+ V)R Y] (3, 9)
LY (3,¢)=mhY" (8 ¢)



Useful Integrals:

Texp( —t? )dt:—‘/z—jE

© ey 8

. nl '
t2n ! exp(—atz)dt-———é—a—m with Rea > 0, n =0,1,2,..

T 1.35....(2n-1) |«
t?" exp(-at’ ) dt= ,/—
_‘[ p( ) 2n+1 an a

with Rea > 0, n=0,1,2.....

fsin2(x)dx=—)2£—%sin(2x)

jsin(mx)sin(nx)dx zg{sin{(m—n)x} _sin{(m+n)x}]

(m-n) (m+n)
_{sin( mx )cos(nx )dx = _j_[cos[(m —n)x] , cosl(m+n)x] }
2 {(m-n) (m+n)

© 1

J-Hn(f) H (£)exp(~-£2)dé=x22"nls,,, where H(E) are Hermite polynomials
;:d are real.

j £ exp(-kt)dt =k T(z) Rez>0,Rek >O0.

0

I'(n+1)=n! for n=12,... and T()=1.
_ r(n+1)
(ma)ﬂ+‘l

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation
with respect to the parameter in the exponential, e.g.

_[x”e""’” ax form>0 andn=0.

b b b 2 5
fdx xexp(-yx) = —;%jdxexp(—;/x) and [dx x* exp(—yx) = E%Idxexp(—yx) and so on.).





