UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2006/2007

TITLE OF THE PAPER: QUANTUM MECHANICS

COURSE NUMBER : P342

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

- > ANSWER ANY FOUR OUT OF FIVE QUESTIONS.
- EACH QUESTION CARRIES **25** MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- > USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS FIVE PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q.1.

(a) A typical thermal neutron kinetic energy equals $\frac{3}{2}kT$ at T=300K.	
What is its velocity and its de-Broglie wavelength?	[5]
(b) Using the uncertainty relation, estimate the radius of the electron whose ionization energy is 13.6 eV.	[5]
 (c) Explain how following experiments can be understood as quantum phenomena. (i) Photoelectric effect. (ii) Black body radiation spectrum. (iii) Compton scattering. 	[2] [2] [2]
(d) Take the wave function $\varphi(x) = N \exp(-\mu x^2)$	
(i) Calculate the effect of the operator $x\left(\frac{\hbar}{i}\frac{\partial}{\partial x}\right)$ on $\varphi(x)$.	[2]
(ii) Calculate the effect of the operator $\left(\frac{\hbar}{i}\frac{\partial}{\partial x}\right)x$ on $\varphi(x)$.	[2]
(iii) Calculate the difference of the two previous results, i.e. {result of (a) - result of (b)}.	
Express the answer in terms of $\varphi(x)$.	[2]
(e) Given $\psi = a_1 \phi_1 + a_2 \phi_2$ and $A \phi_1 = \alpha \phi_1$ $B \phi_2 = \beta \phi_2$ where ϕ_1 and ϕ_2 are ortho-normal functions. Here A and B are linear operators. What is the result of (i) $(A+B)\psi$ (ii) $(A-B)\psi$ (iii) $AB\psi$	[3]
Q.2. A one dimensional harmonic oscillator is in a state such that at time t, $\psi(x,t) = A \exp(-x^2/2a^2) \exp(-i p_0 t/\hbar) \text{for } -\infty \le x \le \infty$ where a and p_0 are positive constants.	
Find (i) Probability of finding the particle at any x. (ii) Normalization constant A. (iii) The expectation value of x. (iv) The variance $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$. (v) Use the Schrodinger equation $i \hbar \frac{\partial \psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t)$	[2] [2] [3] [5]
to derive an expression for the potential. (vi) Use the expression of (v) to find the expectation value of the potential.	[5] [8]

Q.3. Consider the one dimensional problem of a particle of mass m in a potential	
$V = \infty$, $x < 0$,	
$= 0 \qquad 0 \le x \le a$	
= V ₀ x > a . (i) Sketch the potential,	[2]
(ii) Find the solutions in the three regions,	[2] [6]
(iii) Show that the bound state energies ($E < V_0$) are given by the	[13]
equation	[]
$tan\left(\frac{\sqrt{2mE} \ a}{\hbar}\right) = -\sqrt{\frac{E}{V_0 - E}}$	
Explain how the ground state and higher state energies are determined	
for a given potential V ₀ .	
(iv) Write the normalization condition.	[2]
(Do not attempt to evaluate the integral). (v) Sketch the ground state wave function.	[2]
(V) Sketch the ground state wave function.	[2]
Q.4.	
(a) Explain the following:	
(i) What is the difference between a state of the system given by the	[2]
ket $ \ell m\rangle$ and the wave function $\varphi_{\ell m}(r,\vartheta,\varphi)$ describing the same state.	
(ii) A dynamical quantity is always represented by a Hermitian linear operator.	[2]
(b) Show that the eigen-functions of a Hermitian operator corresponding to two different eigenvalues are orthogonal.	[5]
(c) Using the relation $[x_i, p_j] = i \hbar \delta_{ij}$, where $i, j = x, y, z$	[6]
show that $[x^2, p_x^2] = 4 i \hbar x p_x + 2 \hbar^2$	
(d) A Hamiltonian H is defined in terms of operators A and A [†] by $H = \omega A^{\dagger}A + \frac{1}{2}\hbar \omega$	
and $Hu_E = E u_E$ where E is energy of the system defined by H. Given the property [A, A [†]]= h and a function $v_E = A^+ u_E$,	
show that	
(i) [H , A^+]= $\hbar\omega A^+$	[5]
(ii) Use the result of (i) to show that v_E belongs to energy $E+h\omega$.	[5]
Q.5.	
(a) The Hamiltonian of a rotating system with moment of inertia <i>I</i> is given by	
the expression	
$H = \frac{1}{2I} \left(L_{x}^{2} + L_{y}^{2} \right)$	
where $\vec{L} = \vec{r} \times \vec{p}$.	
(i) Show that $y_t^m(\vartheta, \varphi)$ are eigen-functions of H.	[5]
(ii) Determine the eigen-value of H .	[5]
	r-1

(b) An electron is described by an Hamiltonian $H = H_0 + H_1$ where

$$H_0 = \frac{p^2}{2m} - \frac{e^2}{r}$$
 and H_1 describes the contribution from external force.

 H_0 has the eigen functions $\psi_{nlm} = R_{nl}(r) Y_l^m(\vartheta, \varphi)$ and energy E_n . Here

n = principal quantum number,

/= angular momentum quantum number

m =projection of angular momentum.

The eigen functions ψ_{ntm} have following properties:

$$H_0 \psi_{nlm} = E_n \psi_{nlm}$$

$$H_1 \psi_{nlm} = \alpha \psi_{nlm}$$

A state of the electron is described by eigen-function $\phi = N(\psi_{100} - \sqrt{2} \psi_{210})$ and the eigen energy for the electron is given by $H\varphi = E\varphi$.

- (i) Determine the normalization constant N.
- (ii) Determine the expectation value of H.

[5] [10]

Note: $\int \psi_{n_1 \ell_1 m_1}^* \psi_{n_2 \ell_2 m_2} d\tau = \delta_{n_1 n_2} \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}$

@@@@END OF EXAMINATION@@@@

APPENDIX

Given: $\hbar = 1.0546 \ x 10^{-34} \ Js$, $c = velocity of light = 2.99792 \ x \ 10^8 \ m \ s^{-1}$ mass of neutron/proton = 1.6749 x $10^{-27} \ kg$, $k=1.3807x \ 10^{-23} \ JK^{-1}$.

 $1ev=1.6022 \times 10^{-19} \text{ J.}$, mass of electron= $9.10938 \times 10^{-31} \text{ kg.}$

Useful Information:

[
$$r_i$$
, p_j] = $i\hbar$ δ_j where r_i = (x , y , z) and p_i = (p_x , p_y , p_z),
[L_x , L_y] = $i\hbar$ L_z , [L_y , L_z] = $i\hbar$ L_x , [L_z , L_x] = $i\hbar$ L_y where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_1^m(\vartheta, \varphi)$ are eigenfunctions of L^2 and L_z operators with the property

$$L^{2} Y_{\ell}^{m}(\vartheta, \varphi) = \ell(\ell+1) \hbar^{2} Y_{\ell}^{m}(\vartheta, \varphi)$$

$$L_{\gamma}Y_{i}^{m}(\vartheta,\varphi)=m\hbar Y_{i}^{m}(\vartheta,\varphi)$$

Useful Integrals:

$$\int\limits_{-\infty}^{\infty}dz\,e^{-\alpha z^2}=\sqrt{\frac{\pi}{\alpha}}\qquad ,\quad \int\limits_{-\infty}^{\infty}dz\,z^2\,e^{-\alpha z^2}=\frac{1}{2}\sqrt{\frac{\pi}{\alpha^3}}\quad ,\quad \int\limits_{-\infty}^{\infty}dz\,z^4\,e^{-\alpha z^2}=\frac{3}{4}\sqrt{\frac{\pi}{\alpha^5}}$$

$$\int_{0}^{\infty} \exp(-t^{2}) dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} \exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$
with Re a > 0, n = 0,1,2...

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$

$$\int \sin(mx)\sin(nx)dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$

$$\int \sin(mx)\cos(nx)dx = -\frac{1}{2}\left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)}\right]$$

 $\int_{-\infty}^{\infty} H_n(\xi) H_m(\xi) \exp(-\xi^2) d\xi = \pi^{\frac{1}{2}} 2^n n! \delta_{nm} \quad \text{where} \quad H(\xi) \text{ are Hermite polynomials and are real.}$

$$\int_{0}^{\infty} t^{z-1} \exp(-kt) dt = k^{-z} \Gamma(z) \quad \operatorname{Re} z > 0, \operatorname{Re} k > 0.$$

$$\Gamma(n+1) = n!$$
 for $n = 1, 2, ...$ and $\Gamma(1) = 1$.

$$\int x^n e^{-m\alpha x} dx = \frac{\Gamma(n+1)}{(m\alpha)^{n+1}} \quad \text{for } m > 0 \quad \text{and } n \ge 0.$$

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation with respect to the parameter in the exponential, e.g.

$$\int_{a}^{b} dx \ x \exp(-\gamma x) = -\frac{\partial}{\partial \gamma} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and} \quad \int_{a}^{b} dx \ x^{2} \exp(-\gamma x) = \frac{\partial^{2}}{\partial \gamma^{2}} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and so on.}).$$