UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION 2006/2007

:

TITLE OF PAPER

MATHEMATICAL METHODS FOR

PHYSICISTS

COURSE NUMBER:

P272

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES <u>25</u> MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS EIGHT PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

P272 MATHEMATICAL METHODS FOR PHYSICISTS

Question one

- (a) (i) Given the rectangular coordinates of a point P as $\left(-3, -4, 5\right)$, find its cylindrical and spherical coordinates respectively. Express the answers of angles in degrees. (4 marks)
 - (ii) Given the spherical coordinates of a point P as $(7, 120^0, 225^0)$, find its cylindrical and rectangular coordinates respectively. (4 marks)
- (b) For a point P on x-y plane, i.e., z=0,
 - (i) draw the rectangular unit vectors \vec{e}_x , \vec{e}_y as well as the cylindrical unit vectors \vec{e}_ρ , \vec{e}_ϕ for the given point on x-y plane, (3 marks)
 - (ii) express \vec{e}_{ρ} , \vec{e}_{ϕ} in terms of \vec{e}_{x} , \vec{e}_{y} and deduce that $d\vec{e}_{\phi} = -\vec{e}_{\rho} d\phi \quad \text{and} \quad d\vec{e}_{\rho} = \vec{e}_{\phi} d\phi \qquad (5 \text{ marks})$
- (c) Given $f(r,\theta,\phi) = r^2 (2 \cos(\theta) \sin(\phi))$,
 - (i) find $\vec{\nabla} f$, (3 marks)
 - (ii) evaluate $\vec{\nabla} f$ at the point $P: (4, 120^{\circ}, 270^{\circ})$ and also find the directional derivative of f along the direction of $\vec{e}_r 4 + \vec{e}_{\theta} 3$. (6 marks)

Question two

(a) Given any vector function \vec{F} in Cartesian coordinate system, (i.e., $\vec{F} = \vec{e}_x \, F_x + \vec{e}_y \, F_y + \vec{e}_z \, F_z$ where F_x , F_y and F_z are all functions of (x,y,z)), verify the following identity:

$$\vec{\nabla} \bullet (\vec{\nabla} \times \vec{F}) \equiv 0 \tag{6 marks}$$

- (b) Given a vector field $\vec{G}(\rho, \phi, z) = \vec{e}_{\rho} \rho^3 + \vec{e}_{\phi} \rho^2 z \cos(\phi) + \vec{e}_{z} \rho z^2$
 - (i) carry out the following closed surface integration of $\iint_S \vec{G} \cdot d\vec{s}$ where S: the surface enclose the whole of a cylindrical tube of radius ρ_0 and height h, with z axis coincides with the axial line of the tube, i.e., $S = S_1 + S_2 + S_3$ where

 S_1 : circular disk surface of radius $\, \rho_0 \,$ on $\, z=0 \,$ plane

 S_2 : circular disk surface of radius ρ_0 on z=h plane

 S_3 : circular tube surface of radius ρ_0 on $\rho=\rho_0$ plane with height h Express your answer in terms of ρ_0 and h. (12 marks)

(ii) carry out the value integral of $\iiint_V (\vec{\nabla} \cdot \vec{G}) \, dv$ where V: the volume of the given cylindrical tube, i.e., the volume enclosed by the closed surface S specified in (b)(i). Compare it with that obtained in (b)(i) and make brief comments.

Question three

If the transverse wave amplitude function u(x,t) of a certain vibrating string follows the following partial differential equation: $\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{9} \frac{\partial^2 u(x,t)}{\partial t^2} = 0$,

(a) set u(x,t) = X(x) T(t) and utilize the separation variable scheme to deduce the following two ordinary differential equations:

$$\begin{cases} \frac{d^2 X(x)}{d x^2} = -k^2 X(x) \\ \frac{d^2 T(t)}{d t^2} = -9 k^2 T(t) \end{cases}$$
 where k is a separation constant, (4 marks)

- (b) (i) by direct substitution, show that $X(x) = A_k \cos(kx) + B_k \sin(kx)$ and $T(t) = C_k \cos(3kt) + D_k \sin(3kt)$ are a general solution to the ordinary differential equations in (a) with A_k , B_k , C_k and D_k as arbitrary constants, (3 marks)
 - (ii) given the length of the vibrating string as six metres with both ends fixed, i.e., u(0,t)=0=u(6,t) , find the eigenvalues of k and write down the general solution of u(x,t) to include all the eigenvalues of k, (6 marks)

Question three (continued)

(c) given the initial condition as
$$\frac{\partial u(x,t)}{\partial t}\Big|_{t=0} = 0$$
 and

$$u(x,0) = \begin{cases} \frac{x}{2} & \text{for } 0 \le x \le 4 \\ -x + 6 & \text{for } 4 \le x \le 6 \end{cases}$$
, determine the specific values of those

arbitrary constants in the general solution of u(x,t) written down in (b)(ii) and thus write down the specific solution of this given problem.

(hint:
$$\int_0^6 \sin(\frac{n\pi}{6}x) \sin(\frac{m\pi}{6}x) dx = \begin{cases} 3 & \text{if } n=m \\ 0 & \text{if } n\neq m \end{cases}$$

where n and m are non-zero positive integers) (12 marks)

Question four

Given the following differential equation $\frac{d^2y(x)}{dx^2} - 3 \frac{dy(x)}{dx} + 2 y(x) = 0,$ using the power series method, i.e., set $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s} \text{ with } a_0 \neq 0 \text{ and substituting it back to the given differential equation,}$

- (a) requiring the coefficients of the lowest power terms for x, i.e., x^{s-2} and x^{s-1} , to be zero and thus write down the indicial equations. From these equations find the values of s (possibly also the values of a_1 from setting $a_0 = 1$), (6 marks)
- (b) requiring the coefficients of all the rest power terms for x, i.e., x^{s+n} with $n=0,1,2,3,\cdots$, to be zero and find the recurrence relation, (5 marks)
- (c) (i) using the recurrence relation in (b), find the values of a_2 , a_3 , \cdots a_6 if $a_0 = 1 \text{ for each value of } s \text{ found in (a)}.$ (12 marks)
 - (ii) write down the general solution of the given differential equation. (2 marks)

Question five

- (a) Given $m \frac{d^2 x}{dt^2} = -k x$, and $m = \frac{1}{3} kg$ & $k = 12 \frac{N}{m}$
 - (i) find the values of the angular frequency, frequency and period of the given simple harmonic oscillator system, (3 marks)
 - (ii) write down the general solution of the given problem. (2 marks)
- (b) Two simple harmonic oscillators (one is represented by m_1 and k_1 and the other represented by m_2 and k_2) are jointed together by a spring of spring constant k_3 . The coupled differential equations are simplified to be:

$$\begin{cases} \frac{d^2 x_1}{d t^2} = -16x_1 + 12x_2 \\ \frac{d^2 x_2}{d t^2} = 3x_1 - 7x_2 \end{cases}$$

(i) set $x_1(t) = X_1 e^{i\omega t}$ and $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation $\lambda X = AX$ where $\lambda = -\omega^2$, $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ and $A = \begin{pmatrix} -16 & 12 \\ 3 & -7 \end{pmatrix}$

(4 marks)

- (ii) find the eigenfrequencies ω for the matrix equation in (b)(i) (6 marks)
- (iii) find the eigenvectors corresponding to the eigenfrequencies found in (b)(ii)
 respectively, (5 marks)
- (iv) find the normal coordinates of the system. (5 marks)

Useful informations

The transformations between rectangular and spherical coordinate systems are:

The transformations between rectangular and spheric
$$\begin{cases}
x = r \sin \theta \cos \phi \\
y = r \sin \theta \sin s \phi \\
z = r \cos \theta
\end{cases}$$

$$\begin{cases}
r = \sqrt{x^2 + y^2 + z^2} \\
\theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} \\
\phi = \tan^{-1} \frac{y}{x}
\end{cases}$$