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Q. 1. (a) What is the de Broglie wavelength of a neutron with [5]
kinetic energy of 2.0 MeV? What is its velocity?

(b)Using uncertainty relation show that average potential energy  [5]
(U) for a bound nucleon confined in a nucleus within a sphere of

roughly the radius rp = 1.2 x 10°*® m is roughly given by the
relation

-(U)=10 Mev
(c) Write short note on
(i) The degenerate states. [2]
(ii) Parity. [2]
(iii) Complete set of states. [2]

(d) The wave function of a particle moving in one dimension is given by:
w(x)=0 for x<0

=BJx exp(-px) forx=0

where § is a real and positive constant.
(i) Calculate the normalization constant B. (It is a function of p.) [4]
(ii) Calculate the average position of the particle on the x axis, [5]
as a function of p.

Q.2. (a) Take the wavefunction ¢(x)=

\/5173 exp(ikx) [2]

Calculate the effect of the operator [x, px ] on ¢ (X).

(b) For each of the following functions of x, decide whether they have
even, odd or no definite parity. :

(i) xexp(-ax?) where a is a constant. [1]
(ii) Ax+B where A and B are constants. [1]
(iii) x*cos(kx) where k is a constant. [1]

(c) Consider a particle confined in a one-dimensional box
(i.e. in a potential)

V(x)=0for 0 < x< L
=ow for x<0 and x>L.

(i) Determine the solution ¢,(x) and energy E of the stationary
Schrodinger equation for this problem [15]
(ii) Normalize the wave function ¢n(x) . [2]
(iii) Write down the time dependent wave function yn(x,t) for

the n*" stationary state in this potential. [3]



Q.3. (a) Showthat [ x*,p2 ] =4 ihxp+2 1 [4]

(b) Orbital angular momentum operator is defined by L rxp.
Show that

ML, x]=iny [4]
(ii)[Lz,y]~-ihx [2]
(ii[Lz,2]= [2]
(iv) Using the above |dent|t|es show that [L,, r’] = [4]

where r’=x? + y? + 22

(c) A Hamiltonian H is defined in terms of operators A and A" by
H=wA'A +%2h o

and Hue =E ug where E is energy of the system defined by H.

Given the property [ A, A']=handafunctonve=Aue ,

show that

(Y[ H,Al=-hoA [4]
(i) ve belongstoenergy E-h w . [5]

Q.4. (a) For central potentials V(r), the radial part of the
Schrodinger equation for orbital angular momentum ¢=0
is given by

d’R 2dR 2m

E-V(r)JR=0

a7 trar P BV
where m is the reduced mass.
With S(r)=r R(r) , the equation reduces to

azs 2m

= h2 ——[E-V(r)]S=0
The potential between proton and neutron, which binds the
two particles is approximated by the central potential

V(r) =-Vo r<a

=0 r>a

where a is the range of the potential.

(i) State the boundary conditions on S(r) for bound states. [2]

(ii) What are the continuity conditions atr = a . [2]
(iii) Find the acceptable solutions for r<a and r >a. [10]
(iv) Explain how E can be calculated using the acceptable [5]

solutions for a given value of a and Vp.

(b) Given the functions
p(x)=ae*+be™ and ¢,(x)=ae*-be™
where a and b are real constants and 0< x < o .
(i) Show that ¢,(x) and ¢,(x) are orthogonal if

; 2 b2 ~0. [3]
(ii) Use the condltlon of (i) to find the normalization [3]

constant for the function ¢,(x).



Q.5. (a) The potential energy of a 3-dimensional harmonic oscillator is
given by
vV =%m[m12x2 +03(? +22)] with o1 > oz
The energy eigen-values are given by the relation
E=(m+1)ho;+(ny +n3 +Dho,
where ny,n;,ns=0,1,2,...

(D) Determine E for its ground state. [1]
(i) Determine E for its first excited state. [2]
(iii) How many states belong to 1* excited state. [2]
(iv) Are they degenerate? [1]

(b) The solutions of Schrodinger equation for a hydrogen like
atom are given by the wave function

Wnem =Rt (Y] (9,0)
where R, (r) = radial functions.

Y,”(9,¢) = spherical harmonic functions.

The energy eigen values are given by

B
E,=———
n n2
wherep=constant, n=1,2,3,.... ¢=0,1,2,..n-1.
‘and - <m< ¢,
(i) How many states belong to the 2" excited state? [4]

Specify n, ¢ , and m values for each of the states.

(ii) A state of the hydrogen like atom under the influence
of external force is described by the eigen function

@ =430~ Wa10 + V2 W11 — V5 ¥p11]

(a) Find A by normalizing the eigen function ¢ . [5]
(b) What is the expectation value of L* ? [5]
(¢) What is the expectation value of L, ? [5]

Note: J-ll/”1l1m1 ll/"zlzmz d1=5"1"2 55152 5’"1”72

@@@@END OF EXAMINATION@@@®@



APPENDIX:
Given: h=1.0546 x10™ Js , c = velocity of light =2.99792 x 10° m s™
mass of neutron/proton = 1.6749 x 107 kg , k=1.3807x 102 K.

lev=1.6022 x 10™*° 1.
Useful Information:

[A,CD

1=[A,C]D+C[A,D]
[AC, D]

[
A[C,D]I+[A,D]C

[ r11p1]=ih ‘sj where r’=(xIYIZ) and pi:(pXIPVIPZ)J
[Le,L]J=ih Ly, [L,L]=ih Ly, [L;,Lc]=ih L, where L=rxp ,

The functions Y,” (4, ¢ ) are eigenfunctions of L? and L, operators with the property
LY (8,0)=LL+1) Y] (3, 0)
LY (%9)=mrY(3 ¢)

Useful Integrals:

Texp( —t? )dt :1/——”—
0

2

2 !
[t exp(-at?)dt=—""_' with Rea>0, n=0,1,2,..
0 2a
r 1.35...(2n-1) [x
t*" exp(—at?)dt = \/:
2.; p( ) 2n+1 an a

with Rea > 0, n=0,1,2.....
[sin?(x )dx%-%sin(zx)

Isin(mx)sin(nx)dx=1 sinf(m-n)x} _sinf(m+n)x}
2 (m-n) (m+n)
J'sin(mx)cos(nx)dx=—1[cosl(m_n)x] +cos[(m+n)x]}
2 (m-n) (m+n)

© 1
IH,,(;’) H_(£)exp(-&?)dé =n 22"nJ S,, where H(E) are Hermite polynomials

and are real.

0

j t=" exp(—kt)dt = k> T(z) Rez>0,Rek > 0.
0

T(n+1)=n! for n=1,2,... and T(1)=1.
r'(n+1)

J'Xne—mm( dx = .
(ma)

form>0 and n>0.
You can calculate the integrals you need by expressing powers of x through (repeated) differentiation
with respect to the parameter in the exponential, e.g.

2 b

b b b
[dx xexp(—yx)= —;%_[dxexp(-yx) and [dx x* exp(—yx) = Ea;z—jdxexp(—yx) and so on.).



