UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2006

TITLE OF THE PAPER:

QUANTUM MECHANICS-I

COURSE NUMBER :

P342

TIME ALLOWED :

THREE HOURS

INSTRUCTIONS:

• ANSWER ANY **FOUR** OUT OF **FIVE** QUESTIONS.

- EACH QUESTION CARRIES **25** MARKS.
- MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.
- USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX** WHEN NECESSARY.

THIS PAPER HAS **FIVE** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q. 1. (a) What is the de Broglie wavelength of a neutron with kinetic energy of 2.0 MeV? What is its velocity?	[5]
(b)Using uncertainty relation show that average potential energy $\langle U \rangle$ for a bound nucleon confined in a nucleus within a sphere of	[5]
roughly the radius $r_0 = 1.2 \times 10^{-15} m$ is roughly given by the relation	
$-\langle U \rangle \ge 10$ MeV	
(c) Write short note on (i) The degenerate states. (ii) Parity. (iii) Complete set of states.	[2] [2] [2]
(d) The wave function of a particle moving in one dimension is give $\psi(x) = 0$ for $x < 0$	n by:
$=B\sqrt{x}\exp(-\beta x) \text{for } x\geq 0$	
where β is a real and positive constant. (i) Calculate the normalization constant B. (It is a function of β .) (ii) Calculate the average position of the particle on the x axis, as a function of β .	[4] [5]
Q.2. (a) Take the wavefunction $\varphi(x) = \frac{1}{\sqrt{2\pi \hbar}} exp(ikx)$	[2]
Calculate the effect of the operator $[x, p_x]$ on $\varphi(x)$.	
(b) For each of the following functions of x, decide whether they ha even, odd or no definite parity.	ve
(i) $x \exp(-\alpha x^2)$ where α is a constant.	[1]
(ii) $Ax + B$ where A and B are constants.	[1]
(iii) $x^2 \cos(kx)$ where k is a constant.	[1]
(c) Consider a particle confined in a one-dimensional box (i.e. in a potential)	
V(x)=0 for $0 < x < L= \infty for x \le 0 and x \ge L.$	
(ii) Normalize the wave function $\varphi_n(x)$. (iii) Write down the time dependent wave function $\psi_n(x,t)$ for	[15] [2] [3]

(b) Orbital angular momentum operator is defined by $\vec{L} = \vec{r} \times \vec{p}$. Show that

(i)
$$[L_z, X] = i \hbar y$$
 [4]

(ii)
$$[L_z, y] = -i \hbar x$$
 [2]

(iii)
$$[L_z, z] = 0$$
 [2]

(iv) Using the above identities show that
$$[L_z, r^2] = 0$$
 [4] where $r^2 = x^2 + y^2 + z^2$.

(c) A Hamiltonian H is defined in terms of operators A and A[†] by $H = \omega A^{\dagger}A + \frac{1}{2}\hbar \omega$

and $Hu_E = E u_E$ where E is energy of the system defined by H. Given the property $[A, A^{\dagger}] = \hbar$ and a function $v_E = A u_E$, show that

(i) [H , A]=-
$$\hbar\omega$$
A [4]

(ii)
$$v_E$$
 belongs to energy $E - \hbar \omega$. [5]

Q.4. (a) For central potentials V(r), the radial part of the Schrodinger equation for orbital angular momentum $\ell=0$ is given by

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \frac{2m}{\hbar^2}[E - V(r)]R = 0$$

where m is the reduced mass.

With S(r)=r R(r), the equation reduces to

$$\frac{d^2S}{dr^2} + \frac{2m}{\hbar^2} [E - V(r)]S = 0$$

The potential between proton and neutron, which binds the two particles is approximated by the central potential

$$V(r) = -V_0 \qquad r < a$$
$$= 0 \qquad r \ge a$$

where a is the range of the potential.

- (i) State the boundary conditions on S(r) for bound states. [2]
- (ii) What are the continuity conditions at r = a. [2]
- (iii) Find the acceptable solutions for r < a and $r \ge a$. [10]
- (iv) Explain how E can be calculated using the acceptable [5] solutions for a given value of a and V_0 .
- **(b)** Given the functions

$$\phi_1(x) = a e^{-x} + b e^{-2x}$$
 and $\phi_2(x) = a e^{-x} - b e^{-2x}$

where a and b are real constants and $0 < x < \infty$.

(i) Show that $\phi_1(x)$ and $\phi_2(x)$ are orthogonal if

$$\frac{1}{2}a^2 - \frac{1}{4}b^2 = 0. ag{3}$$

(ii) Use the condition of (i) to find the normalization [3] constant for the function $\phi_i(x)$.

Q.5. (a) The potential energy of a 3-dimensional harmonic oscillator is given by

$$V = \frac{1}{2}m[\omega_1^2 x^2 + \omega_2^2 (y^2 + z^2)]$$
 with $\omega_1 > \omega_2$

The energy eigen-values are given by the relation

$$E = (n_1 + \frac{1}{2})\hbar\omega_1 + (n_2 + n_3 + 1)\hbar\omega_2$$

where n_1 , n_2 , $n_3 = 0$, 1, 2, . . .

- (i) Determine E for its ground state. [1]
- (ii) Determine E for its first excited state. [2]
- (iii) How many states belong to 1st excited state. [2]
- (iv) Are they degenerate? [1]
- **(b)** The solutions of Schrodinger equation for a hydrogen like atom are given by the wave function

$$\psi_{n\ell m} = R_{n\ell}(r) Y_{\ell}^{m}(\vartheta, \varphi)$$

where $R_{n\ell}(r) = \text{radial functions.}$

 $Y_{\ell}^{m}(\vartheta, \varphi) =$ spherical harmonic functions.

The energy eigen values are given by

$$E_n = -\frac{\beta}{n^2}$$

where $\beta = constant$, ~n=1 , 2 , 3 , , $~\ell = 0$, 1 , 2 , . . n-1. and $~-\ell < m < \ell$.

- (i) How many states belong to the 2^{nd} excited state? [4] Specify n, ℓ , and m values for each of the states.
- (ii) A state of the hydrogen like atom under the influence of external force is described by the eigen function

$$\varphi = A \left[3\psi_{100} - \psi_{210} + \sqrt{2} \,\psi_{211} - \sqrt{5} \,\psi_{21-1} \right]$$

- (a) Find A by normalizing the eigen function φ . [5]
- (b) What is the expectation value of L²? [5]
- (c) What is the expectation value of L_z? [5]

Note: $\int \psi_{n_1 \ell_1 m_1}^* \psi_{n_2 \ell_2 m_2} d\tau = \delta_{n_1 n_2} \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}$

@@@@END OF EXAMINATION@@@@

APPENDIX:

Given: $\hbar = 1.0546 \ x 10^{-34} \ Js$, $c = velocity of light = 2.99792 \ x \ 10^8 \ m \ s^{-1}$ mass of neutron/proton = 1.6749 x $10^{-27} \ kg$, $k = 1.3807x \ 10^{-23} \ JK^{-1}$.

 $1ev=1.6022 \times 10^{-19} J.$

Useful Information:

$$[A, CD] = [A, C]D + C[A, D]$$

 $[AC, D] = A[C, D] + [A, D]C$

[
$$r_i$$
, p_j] = $i\hbar$ δ_j where r_i = (x , y , z) and p_i = (p_x , p_y , p_z),
[L_x , L_y] = $i\hbar$ L_z , [L_y , L_z] = $i\hbar$ L_x , [L_z , L_x] = $i\hbar$ L_y where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_{\ell}^{m}(\vartheta,\varphi)$ are eigenfunctions of L^{2} and L_{z} operators with the property $L^{2}Y_{\ell}^{m}(\vartheta,\varphi)=\ell(\ell+1)\,\hbar^{2}Y_{\ell}^{m}(\vartheta,\varphi)$ $L_{z}Y_{\ell}^{m}(\vartheta,\varphi)=m\,\hbar\,Y_{\ell}^{m}(\vartheta,\varphi)$

Useful Integrals:

$$\int_{0}^{\infty} \exp(-t^{2}) dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} \exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$

with Re a > 0, n=0,1,2....

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$

$$\int \sin(mx)\sin(nx) dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$
$$\int \sin(mx)\cos(nx) dx = -\frac{1}{2} \left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)} \right]$$

 $\int\limits_{-\infty}^{\infty}H_n(\xi)\,H_m(\xi)\exp(-\xi^2)\,d\xi=\pi^{\frac{1}{2}}\,2^n\,n!\,\delta_{nm}\quad\text{where}\quad H(\xi)\text{ are Hermite polynomials}$ and are real.

$$\int_{0}^{\infty} t^{z-1} \exp(-kt) dt = k^{-z} \Gamma(z) \quad \text{Re } z > 0, \text{Re } k > 0.$$

$$\Gamma(n+1) = n! \quad \text{for } n = 1, 2, \dots \text{ and } \Gamma(1) = 1.$$

$$\int x^{n} e^{-m\alpha x} dx = \frac{\Gamma(n+1)}{(m\alpha)^{n+1}} \quad \text{for } m > 0 \quad \text{and } n \ge 0.$$

You can calculate the integrals you need by expressing powers of x through (repeated) differentiation with respect to the parameter in the exponential, e.g.

$$\int_{a}^{b} dx \ x \exp(-\gamma x) = -\frac{\partial}{\partial \gamma} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and} \quad \int_{a}^{b} dx \ x^{2} \exp(-\gamma x) = \frac{\partial^{2}}{\partial \gamma^{2}} \int_{a}^{b} dx \exp(-\gamma x) \quad \text{and so on.}.$$