UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

**MAIN EXAMINATION 2006** 

TITLE OF PAPER

**ELECTRONICS I** 

COURSE NUMBER

P311

:

:

TIME ALLOWED

**THREE HOURS** 

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE QUESTIONS

**EACH QUESTION CARRIES 25 MARKS** 

MARKS FOR DIFFERENT SECTIONS ARE

SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

- (a) With the aid of a diagram, describe the principle of operation of a pnp (bipolar junction) transistor in the forward-active mode. (10 marks)
- (b) The characteristics of a typical bipolar junction transistor (npn) are given in Fig. 1.1.



Fig. 1.1

- (i) Draw the loadline for supply voltage  $V_{CC} = 8 V$  and collector resistor  $R_C = 1k\Omega$ . (First: Determine the intercepts of the loadline). (4 marks)
- (ii) Choose the best operating point Q for an amplifier which uses this transistor, and then estimate the quiescent values of  $I_B$ ,  $V_{CE}$  and  $I_C$ . Justify your choice. (3 marks)
- (c) The amplifier stage of Fig. 1.2 utilises an npn transistor in the C-E connection. If  $I_E = 3 \, mA$ ,  $V_{CE} = 8 \, V$ ,  $V_E = 6 \, V$ , calculate values of the following:  $R_C$ ,  $R_E$  and  $V_B$ . (Assume that  $V_{BE} = 0.6 \, V$ )



- (a) A 9.1 V, 1.3 W Zener diode has a minimum current requirement of 20 mA and is to be used in a voltage regulator circuit. The supply voltage is  $20 V \pm 10\%$  and the constant load current is 30 mA.
  - (i) Draw the circuit diagram of the voltage regulator circuit and label it; (2 marks)
  - (ii) Calculate the series resistance;

(7 marks)

- (iii) Calculate the power dissipated in the diode when the supply voltage is 22 V. (5 marks)
- (b) A half-wave rectifier circuit consists of a diode and a load resistor R<sub>L</sub>. It operates on an a.c. mains supply of 240 V r.m.s. with a step-down transformer having a turns ratio T of 1/3. Calculate
  - (i) the peak value of the secondary voltage and

(3 marks)

(ii) the average value of the voltage across R<sub>L</sub>.

(2 marks)

- (c) A 100  $\mu$ F capacitor is used to smooth the output of a half-wave rectifier. The peak voltage at the transformer secondary is 56 V (50 Hz) and the average current through the load is 15 mA.
  - (i) Calculate the peak value of the ripple voltage

(4 marks)

(ii) Calculate the average output voltage.

(2 marks)

- (a) Draw and label a diagram that illustrates how you would obtain the drain and transfer characteristics of an n-channel JFET. (3 marks)
- (b) Sketch and label typical drain and transfer characteristic curves. (4 marks)
- (c) Use the curves to:
  - (i) explain the use of a JFET as a voltage controlled resistor; (3 marks)
  - (ii) explain how you would determine the mutual conductance. (4 marks)
- (d) When the gate-source voltage of a JFET is held at a constant value it is found that a change in the drain-source voltage of 2 V produces a change of 0.5 mA in the drain current. Calculate the drain resistance, r<sub>d</sub> of the FET. (5 marks)
- (e) Consider the JFET amplifier in Fig. 3.1.

$$V_{DD} = 15 \text{ V}$$

$$R_{D} = 4.7 \text{ k}\Omega$$

$$g_{m} = 10 \text{ mA/V}$$

$$R_{s} = 1 \text{k}\Omega$$



Fig. 3.1

- (i) If the self-bias value of  $V_{GS} = -1.0$  volt, what is the bias value of the drain current,  $I_D$ ? (2 marks)
- (ii) Calculate the quiescent value of  $V_D$ . (2 marks)
- (iii) Calculate the voltage gain of the amplifier. (2 marks)

- (a) In the United States the ac power-line voltage is nominally 115 V rms. This voltage is connected to the primary of a transformer with a turns ratio of 1/50. What is the peak-to-peak secondary voltage? (4 marks)
- (b) For the half-wave rectifier of Fig. 4.1 with  $R_L = 10 \text{ k}\Omega$ ,
  - (i) What are the dc output current and voltage? (5 marks)
  - (ii) If  $R_L$  in Fig. 4.1 is 100  $\Omega$ , what is the average dc output voltage? (2 marks)
  - (iii) What would be the dc output voltage if the rectifier is used with a capacitor filter of  $10 \mu F$ ? (6 marks)



Fig. 4.1

(c) In the Zener diode regulator shown in Fig. 4.2,  $V_z = 5.1$  V, and the Zener diode has a maximum power rating  $P_{max} = 500$  mW. Find the required value of  $R_s$  if V = 10 V,  $R_L = 100$   $\Omega$  and the power dissipation is to be no more than 150 mW. (8 marks)



Fig. 4.2

- (a) Explain how you would fabricate a p-channel JFET. (7 marks)
- (b) With the aid of a diagram(s) and characteristics, discuss the principle of operation of the p-channel JFET.

(8 marks)

- (c) (i) Draw the small signal model of a JFET common source amplifier; (3 marks)
  - (ii) With the aid of the diagram, show that the gain of the amplifier is given by
    (4 marks)

$$\frac{v_o}{v_i} = -g_m \left[ \frac{1}{r_d} + \frac{1}{R_D} \right]^{-1}$$

(d) In a JFET source follower, the FET used has a transconductance  $g_m$  of 15 m $\Omega^{-1}$ . The source resistor  $R_s = 5k\Omega$ . Find the voltage gain  $A_v$  and the output resistance.

(3 marks)