UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2006

TITLE OF THE PAPER:

COMPUTATIONAL PHYSICS -I

COURSE NUMBER :

P262

TIME ALLOWED

THREE HOURS

SECTION A: ONE HOUR. SECTION B: TWO HOURS.

INSTRUCTIONS:

SECTION A: THIS IS THE WRITTEN PART TO BE COMPLETED

IN YOUR ANSWER BOOK. CARRIES A TOTAL OF

<u>30</u> MARKS.

:

SECTION B: THIS IS A PRACTICAL PART WHICH YOU WILL

WORK ON A PC AND SUBMIT THE PRINTED OUTPUT. CARRIES A TOTAL OF <u>70</u> MARKS.

ANSWER ANY TWO QUESTIONS FROM SECTION A AND ALL THE QUESTIONS FROM SECTION B.

MARKS FOR EACH QUESTION ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS FOUR PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

SECTION A (Written Section)

Time: One Hour

Q.1.:

(A) Explain the difference between

[5]

- (i) $y1:=a^*x+b$ and $y2:=(a,b,x) \to a^*x+b$.
- (ii) diff and Diff.
- (iii) solve and fsolve.
- (iv) Pi and pi.
- (v) the symbol () and [].
- (B) What will be the result of entering following Maple statements.

[3]

- (i) a:=1/4 and b:=1.0/4
- (ii) seq(2*n^3 , n=1..4)
- (iii) end;
- (C) Write Maple statements to calculate

[2]

(i)
$$\int_{0}^{2} x^{3} dx$$

(ii)
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2}$$

(D) Write Maple statements to produce 10 pairs of data sets (x_i, y_i) , i = 1...10 using the following relation.

[5]

$$y_i = 0.3 + 0.2 * x_i + 1.5 * sin(x_i)$$

for $0 \le x \le 2.0$.

 ${f Q.2.}$ The steady state temperature distribution ${\sf T}({\sf x})$ along a particular thin bar of unit length is given by

$$\frac{d^2T}{dx^2} = 10(T-20)$$

The boundary conditions are at x=0, T=100° C and $\frac{dT}{dx}$ =1.0.

Using the Maple commands:

(i) Find the exact solution for T(x). Plot the solution for the interval $0 \le x \le 1$.

[4]

(ii) Solve the equation numerically using default numerical method available in Maple. Plot the solution in the interval $0 \le x \le 1$.

[2]

[4]

(iii) Plot solutions of (i) and (ii) on one graph.

[5]

(iv) Convert the second order differential equation into two first order

2

differential equations. Solve the two first order differential equations numerically using default numerical method available in Maple.

Q.3. (a) Using Maple statements generate 10 data points (x_i, y_i) using the equation [5]

$$y_i = 0.1 + 9.8 x_i$$

for $x_i = x_{i-1} + \Delta x$ for $i = 0...10$ with $x_0 = 1.0$ and $\Delta x = 0.1$.

(b)Using the above data points, write a program in Maple to calculate [10]

$$\sum_{i=0}^{10} x_i \quad , \sum_{i=0}^{10} y_i \quad , \sum_{i=0}^{10} x_i^2 \quad , \sum_{i=0}^{10} y_i^2 \quad , \sum_{i=0}^{10} x_i y_i \quad , \text{and } \sum_{i=0}^{10} (x_i^2 - x_i y_i)$$

SECTION B (Practical Section)

Time: Two Hours.

[10]

Q.4. (a) Plot the function $f(x) = \sin^2(x) - x^3$ for x = -1 to 2. [5] How many roots are there?

(b) Solve the equation f(x)=0 to determine its roots.

Q.5. Find the solution of the initial value problem [10]

$$\frac{dy}{dx} = y \cot(x) + 20 \sin(x) \cos(20x)$$

with initial boundary condition $y(\pi/2) = 0$..

Plot the solution. Explain why there is beat phenomena. [5]

Q.6. The velocity v(t) of a falling body of unit mass under the influence of air resistance from a height is described by the differential equation

$$\frac{dv(t)}{dt} = -9.8 + 0.009v^2(t)$$

Initial value is given for t=0 as v(0)=0.

(A) Solve the equation for v(t) using Maple commands. Plot v(t) vs t for t=0..15.

[10]

(B) At time t=10, a parachute is opened, resulting into a differential equation for the fall as

$$\frac{dv(t)}{dt} = -9.8 + 0.1v^2(t)$$

 (i) Convert the equation of (B) into a differential equation for distance x(t). Initial boundary condition is at time t=10 and this is x(10)= 500 v(10)= value of v(t) from (i) at time t=10. 	[5]
(ii) Solve the differential equation numerically using default method of Maple.	[10]
(iii) Plot x(t) vs t for t=10100.	[2]
(iv) From the graph estimate the time t when the falling body touches ground.	[5]
(v) From this time find x(t) and v(t).	[8]

eee END OF EXAMINATION eee