UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

SUPPLEMENTARY

EXAMINATION 2005

Title of the Paper: DIGITAL ELECTRONICS

Course Number: P411

Time Allowed: Three Hours.

Instructions:

- 1. Answer any five questions.
- 2. Each question carries 20 points

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1:

- a Transform the Boolean function, $F = BE + \overline{B}D\overline{E}$, into
 - (1). a K-map,
 - (2) a function in the following format:

$$F(A, B, C, D, E) = \sum (n1, n2, ---, nB, nC, ---, n1F)$$

The number in the above brackets must be hexadecimal.

(hint, expand this function into canonical form first.)

10pts:

b Using the tabulation method, simplify the following Boolean function F into an SOP:

$$F(v, w, x, y, z) = \Sigma(2, 6, 9, D, 12, 13, 16, 17, 19, 1D, 1F)$$

(hex number in the brackets of the above function)

10pts:

QUESTION 2:

a With the help of a K-map, obtain the simplified expression of the Boolean Function in only SOP

$$F = (\overline{A} + \overline{B} + D)(A + B + \overline{D})(A + \overline{B} + C + D)(\overline{A} + \overline{D})$$

10pts:

b Implement the Boolean function, $F = (A + \overline{B})(CD + E)$, with only NOR gates and nothing but NOR gates. Complement inputs are available only at input terminals, nowhere else. The implement must have its function support.

QUESTION 3:

a Implement the following function with a multiplexer of 8-1 (must have this component) and other elementary gates.

$$F(v, w, x, y) = \Sigma(0, 3, 5, 8, 9, D, F)$$

10pts:

(hex number in the brackets of the above function)

b Fig. 3 is a microprogrammed sequencer. In the ROM, there are fields in a byte: jumping address, mux select address, and sequence output, C. The sequencer starts at address 0000 and finally jumps back to 0000. What is the output C just before jumping back to 0000. And give the sequence of address that the processor runs through.

Fig. 3

ROM	ROM contents		
addr	sel	jump	С
0	1	6	Α
1	1	3	2
2	0	9	4
3	0	Α	7
4	1	7	C
5	1	Α	F
6	1	9	9
7	0	0	4
8	1	0	1
9	1	8	3
Α	0	E	E
В	1	9	5
С	1	0	D
1 2 3 4 5 6 7 8 9 A B C D E F	1 0 0 1 1 1 0 1 1 0 1 1 1 0	6 3 9 A 7 A 9 0 0 8 E 9 0 B 4 4	A 2 4 7 C F 9 4 1 3 E 5 D 0 0 6
E	0	4	0
F	X	4	6

QUESTION 4:

Design a sorting circuit for two 3-bit codes, B₂B₁B₀ and A₂A₁A₀. Compare two codes to find out "B>A". Design the circuit to fit in a PLA. The circuit must have its function support. (hint, using logical inference, or an 8x8 K-map, or an abridged truth table.) 20pts:

QUESTION 5:

Design, with D-ff's, a clocked sequencer to cycle repeatedly through the states: - - 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5 - - . Obtain a logic circuit, a state table, a state diagram, and ff input functions. (hint: need a hidden unit)

20pts:

QUESTION 6:

Design a sequential machine, with no restriction on the use of any logic components. Its ASM diagram is shown in Fig. 6 below. Obtain a state transition table, and a circuit diagram plus the support of the logic equations. Two D-ff's are proper to use

20pts:

Fig. 6, ASM diagram

