UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION 2005

TITLE OF THE PAPER: QUANTUM MECHANICS-I

COURSE NUMBER : P342

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES 25 MARKS. MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

USE THE INFORMATION GIVEN IN THE ATTACHED **APPENDIX WHEN NECESSARY.**

THIS PAPER HAS SIX PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION

Q.1:

- a) What is the deBroglie wavelength of alpha particle with kinetic energy of 7.7 MeV? In Rutherford's experiments, distances of the order of 10⁻¹³ m were involved, yet the analysis of the experiment did not include the wave properties of alpha-particle. Was this justified? [6 marks]
- b) Electromagnetic radiation consists a collection of quanta known as photons with energy $h\nu$. Calculate the number of photons emitted by 100 watt source with $\lambda = 600 \times 10^{-9}$ m.
- c) Explain the circumstance under which a system can be described by stationary states. [5 marks]
- d) Write short notes on:

[8 marks]

- (i) Ortho-normality
- (ii) Degenerate states
- (iii) Parity
- (iv) Complete set.

Q.2: Consider the step potential

$$V(x) = V_0 \qquad x > 0$$
$$= 0 \qquad x < 0$$

Consider a current of particles of mass m propagating from left to right of energy $E > V_0$.

Define
$$k_1 = \sqrt{\frac{2mE}{\hbar^2}}$$
 , $k_2 = \sqrt{\frac{2m(E-V)}{\hbar^2}}$

Then the general solutions for the regions 1 (x<0) and 2(x>0) are $\phi_1(x) = A_1 e^{k_1 x} + B_1 e^{-k_1 x}$, $\phi_2(x) = A_2 e^{k_2 x} + B_2 e^{-k_2 x}$

- (i) State the boundary conditions on the solutions. [2]
- (ii) Show that $B_2 = 0$ and $A_1 + B_1 = A_2$. [3]

(iii) Show that
$$\frac{B_1}{A_1} = \frac{k_1 - k_2}{k_1 + k_2}$$
 and $\frac{A_2}{A_1} = \frac{2k_1}{k_1 + k_2}$. [8]

(iv) Show that the probability current density

$$j(x) = \frac{\hbar}{2mi} \left[\phi^*(x) \frac{\partial \phi(x)}{\partial x} - \phi(x) \frac{\partial \phi^*(x)}{\partial x} \right] = \frac{\hbar k_2}{m} |A_2|^2$$
 [4]

(v) Using the definition of the reflection co-efficient R, show that

$$R = 1 - \frac{4k_1k_2}{(k_1 + k_2)^2}$$
 [8]

Q.3. (a)A particle is described by the wave function

$$\psi(x) = \left(\frac{\pi}{a}\right)^{-1/4} \quad \exp(-ax^2/2)$$

Show that
$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{2a}}$$
 [10]

(b) Consider a one dimensional physical system described by the Hamiltonian

$$H = \frac{p^2}{2m} + V(x)$$

(i) Show that
$$[H,x] = -\frac{i\hbar}{m}\rho$$
. [5]

(ii) For stationary state find
$$\langle p \rangle$$
. [5]

Note: For stationary states we have $H|\psi\rangle = \lambda |\psi\rangle$ where λ is the eigen value.

(c) The stationary states of a particle are given by the wave function

$$\varphi_n(x) = \sqrt{\frac{2}{L}} \sin(\frac{\pi nx}{L})$$
 and the corresponding energies are $E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2}$

where n = 1, 2, 3,

At time t =0, the particle is in a state given by

$$\psi(x,t=0) = \frac{1}{\sqrt{2}} [\varphi_1(x) + \varphi_2(x)]$$
.

Find the time dependent $\psi(x,t)$.

Q.4. (a) The motion of a point mass m is described by a one dimensional potential

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

The orthonormal oscillator eigenfunctions are

$$\psi_n(x) = 2^{-\eta/2} \left(n!\right)^{-1/2} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar}x^2\right) H_n\left(\sqrt{\frac{mw}{\hbar}}x\right)$$

where H_n are Hermite polynomials and n = 0, 1, 2,

Find value of the following integrals:

$$\int_{-\infty}^{\infty} \psi_m^* x \psi_n dx \quad and \quad \int_{-\infty}^{\infty} \psi_m^* p_x \psi_n dx$$

[5]

for (i) m = 0 and n = 1[5] (ii) m=1 and n=2[5] (iii) m=n for n=0,1, and 2. [5]

(b) The motion of a point mass m is described by a two dimensional potential

$$V(x,y) = \frac{1}{2}m\omega^2(x^2 + y^2)$$

- (i) Write down the expression for the Hamiltonian. [2]
- (ii) Show that the Schrodinger equation permits factorization of the [6] wave function and each of the two factors then satisfy a one dimensional oscillator equation.
- (iii)Write down the expressions for the eigen functions for the [2] first two states.
- Q.5. (a) The Hamiltonian of a system is given by the expression [12] $H = \frac{1}{2I_1} (L_x^2 + L_y^2) + \frac{1}{2I_2} L_z^2$

Find an expression for the eigenvalue of the Hamiltonian. Here L is orbital angular momentum.

(b) An electron in the Coulomb field of a proton with Hamiltonian H is in a state described the wave function

$$\phi = \frac{1}{6} \left[4 \, \psi_{100} + 3 \, \psi_{211} - \psi_{210} + \sqrt{10} \, \psi_{21-1} \right]$$

(i) What is the expectation value of the energy? [5] (ii) What is the expectation value of
$$L^2$$
? [4] (iii) What is the expectation value of L_z ? [4]

(iii) . What is the expectation value of
$$L_z$$
? [4]

Note that $\psi_{nlm} = R_{nl}(r) Y_l^m(\vartheta, \varphi)$ is the eigen function of H with energy $\frac{E_0}{r^2}$

where Eo is a constant and

n = principal quantum number,

/ = angular momentum quantum number

m = projection of angular momentum onto the z-axis.

and
$$\int \psi_{n,i,m}^* \psi_{n,i,m} d\tau = \delta_{n,n} \delta_{i,i} \delta_{m,m}$$
.

@@@@END OF EXAMINATION@@@@

APPENDIX:

Useful Information:

 $h=1.0546 \ x10^{-34} \ Js$, c = velocity of light =2.99792 x $10^8 \ m \ s^{-1}$ mass of alpha particle = 6.6447 x $10^{-27} \ kg$, 1 eV = 1.6022 x $10^{-19} \ J$

$$[r_i, p_j] = i\hbar \delta_{ij}$$
 where $r_i = (x, y, z)$ and $p_i = (p_x, p_y, p_z)$, $[L_x, L_y] = i\hbar L_z$, $[L_y, L_z] = i\hbar L_x$, $[L_z, L_x] = i\hbar L_y$ where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_i^m(\vartheta, \varphi)$ are eigen functions of L^2 and L_z operators with the property

$$L^{2} Y_{\ell}^{m}(\vartheta, \varphi) = \ell(\ell+1) \hbar^{2} Y_{\ell}^{m}(\vartheta, \varphi)$$

$$L_{\gamma} Y_{\ell}^{m}(\vartheta, \varphi) = m \, \hbar Y_{\ell}^{m}(\vartheta, \varphi)$$

Useful Integrals:

$$\int_{0}^{\infty} \exp(-t^{2}) dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} \exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$
with Re a > 0, n = 0,1,2.....

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$

$$\int \sin(mx)\sin(nx)dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$

$$\int \sin(mx)\cos(nx)dx = -\frac{1}{2}\left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)}\right]$$

First few Hermite polynomials:

$$H_{\scriptscriptstyle 0}(\xi)=1$$

$$H_1(\xi)=2\xi$$

$$H_{a}(\xi) = -2 + 4\xi^{2}$$

 $H_2(\xi) = -2 + 4\xi^2$ The Hermite polynomials are orthogonal and have the property,

$$\int_{-\infty}^{\infty} H_m(\xi) H_n(\xi) e^{-\xi^2} d\xi = 0 \quad \text{for } m \neq n$$

$$\int_{-\infty}^{\infty} [H_n(\xi)]^2 e^{-\xi^2} d\xi = \sqrt{\pi} 2^n n!$$

$$\int_{0}^{\infty} [H_{n}(\xi)]^{2} e^{-\xi^{2}} d\xi = \sqrt{\pi} 2^{n} n!$$