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Q.1.
(a) (i) A typical thermal neutron kinetic energy equais —;—kT at T=300K. (5]

What is its velocity and its de Broglie wavelength?

In a specimen where inter-atomic distances are of the order 10*°m,

will there be diffraction of neutrons.

(ii} The average lifetime of an excited state of an atom is about /0 sec.

Using this as at for the emission of a photon, compute the minimum 4v
permitted by the uncertainty principle. What fraction of » is this if the
wavelength of the spectral line involved is 4.0 x107 m? [5]

Given: h=1.0546 x107* Js , c = velocity of light =2.99792 x 10° m s
mass of neutron = 1.6749 x 107 kg , k=1.3807x 10 IK* .

{b) Explain: [10]

) What do you understand by stationary states.

(i} The degenerate states.

(iii)  Parity.

(iv) Complete set of states.

{v) Ortho-normal states and its physical significance.

{c) The wave function of a particle moving in one dimension is given by: [51
p(x)=0 for x <0

=BJx exp(—fx) forxz0
where B is a real and positive constant.

Caiculate the normalization constant B. (It is a function of p.)

Note: I(z)= K> J' > exp(—kt)dt Rez>0,Rek > 0.
D

Fn+WH=nt for n=12,... and T'()=1.

Q.2.
{i) Write down the Schrodinger equation for the potential given by 4]
Vix) = v, if |x]<l and Vo> 0,
= 0 if j>1
(i) Solve the Schrodinger equation to determine the odd [/.e. y(—x) = —y(x)]
bound energy eigenstates. [12]
(iii) Write down the normalization integral for the above energy states, [4]

Note: Do not attempt to evaluate the integral,

(iv) What do you get in the limit ¥, — oo while keeping the energy [5]
E'= E+V, finite?




Q.3.

Following wave functions

2 2 2
(@) Uy(X,y) = Aem[_."_‘_(i‘ziéf_)}
2 2 2
(b) u(x,y)=Bxy exp[-a_(i‘.zLy_)_}

(¢} u,(x,y)=C (2a’y* 1) exp [_M]

2
are the solutions of the eigenvalue problem Hu, (x,y)=E, u,(x,¥)

hz 62 a2 hz a‘l
with H=—— + + x2+y?).

2m(6x2 aﬁ] 2m " +y%)
(i) What is the expression for the potential? [2]
(ii) Determine E, for each of them. [9]
(iii) What is the parity of each state? . {3
{iv) Determine the normalization constants A , B, [6]
(v) Are there any degenerate states among the three? If so, why? [5]
Q.4I
{a) show that

M) [f(?),p,]:ihaixf(f) where F=ix+jy+kz . (3]

(i) [x, py] = 3i hp} [51
Gy [L,,L_]=2h1L, [5]

where L =L +il and L_ =L, -iL,

(b) The Hamiltonian of a system with moment of inertia g is given by
the expression
1

2 2
H= 5 p (Lx +Ly )
Here L is orbital angular momentum.
(i) Show that [ L%, L, ]1=0 for i=x,y,z . [3]
(ii) Show that [ H,L°7=0 and [H,6L,]1=0. (4]
(ili) Show that the functions Y,"(3,¢) are eigenfunctions of H .
Find an expression for the eigenvalue of the Hamiltonian, 5]

Q.5. The stationary Schridinger equation for a particle moving in a central
potential V(r) is

L2@(r, 8, )+ V(N)O(r, 9, p),

W ("0 20 1
EQ(r,9.¢)=——| L2, 222
(r.8.0) (4ar2 W é‘r}err2

2m
where L is the angular momentum operator for the particle’s motion.

(a) Write the wave function ®(r,6,¢) as a product of a radical [15]
function R ( r) and an angular momentum eigenfunctions Y;"($,¢),




and derive the differential equation for R( r). State the boundary conditions
on R(r).

{b) An electron in the Coulomb field of a proton with Hamiltonian H is in a
state described the wave function

¢= %[4 W00 +3 Wayq ]

(i) What is the expectation value of the energy? 5]
(i)  What is the expectation value of 1 and [, ? [5]

Note that ,,, =R, (r)Y"($,p) is the eigenfunction of H with energy

—2 where E, is a constant and
n
n = principal quantum number,
I = angular momentum quantum number
= projection of angular momentum.

jyl;'f'm' ¥aim dt:é‘n'n 5»"! 5m'm
@@@@END OF EXAMINATIONG@@O@

APPENDIX:
Useful Information:

[A,CD1=[A,CID+C[A,D]
[AC,D]=A[C,D]+[A,D]C

[rlrpj]—'h&JWhere n= (X YIZ) and pf"(pxle.rpZ)i
[Le,by]=ih Ly, [L, L] =ik Ly, [Lz,Ly]=ih L, where L=Fxp ,

The functions Y,” (&, ¢ ) are eigenfunctions of L? and L, operators with the
property
LY (8,9) =L+ )R Y](3,0)

L, Y(3,9)=mhY(8,9)

Useful Integrais:

j exp( -t )d A
2
nl
J‘tz’“’ exp(— atz)dt- 2a7T with Rea >0, n =0,1,2,..
0

with Rea> 0, n=0,1,2.....




_"sin2(x)dx=§—%sin(2x)

Isin(mx)sin(nx)dx :j_[sin{(m—n)x} _sinf(m+n)x}
2 (m-n) {(m+n)
, _ 1 cosf(m-n)x]  cosf(m+n)x]
_[sm(mx)cos(nx)dx— 2[ m-n) + ) ]

TH,,({) H, (&) exp(—¢&% )dé = n'% 2"nlés,, where H(E) are Hermite

polynomials and are real.




