UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONIC ENGINEERING

MAIN EXAMINATION 2005

TITLE OF THE PAPER:

QUANTUM MECHANICS-I

COURSE NUMBER : P342

TIME ALLOWED : THREE HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES **25** MARKS. MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

USE THE INFORMATION GIVEN IN THE ATTACHED APPENDIX WHEN NECESSARY.

THIS PAPER HAS **FIVE** PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL THE INVIGILATOR HAS GIVEN PERMISSION.

Q.1.

(a) (i) A typical thermal neutron kinetic energy equals $\frac{3}{2}kT$ at T=300K. [5]

What is its velocity and its de Broglie wavelength? In a specimen where inter-atomic distances are of the order $10^{-10}m$, will there be diffraction of neutrons.

(ii) The average lifetime of an excited state of an atom is about 10^{-8} sec. Using this as Δt for the emission of a photon, compute the minimum Δv permitted by the uncertainty principle. What fraction of v is this if the wavelength of the spectral line involved is $\Delta t = 0.0000$

wavelength of the spectral line involved is $4.0 \times 10^{-7} m$? [5]

Given: $\hbar = 1.0546 \ x 10^{-34}$ Js , $c = velocity \ of \ light = 2.99792 \ x \ 10^8 \ m \ s^{-1}$ mass of neutron = 1.6749 x 10^{-27} kg , $k = 1.3807 x \ 10^{-23} \ J K^{-1}$.

- (b) Explain: [10]
 - (i) What do you understand by stationary states.
 - (ii) The degenerate states.
 - (iii) Parity.
 - (iv) Complete set of states.
 - (v) Ortho-normal states and its physical significance.
- (c) The wave function of a particle moving in one dimension is given by: $\psi(x) = 0 \qquad \text{for } x < 0$ $= B\sqrt{x} \exp(-\beta x) \qquad \text{for } x \ge 0$

where β is a real and positive constant.

Calculate the normalization constant B. (It is a function of β .)

Note:
$$\Gamma(z) = k^2 \int_{0}^{\infty} t^{z-1} \exp(-kt) dt$$
 Re $z > 0$, Re $k > 0$.
 $\Gamma(n+1) = n!$ for $n = 1, 2, ...$ and $\Gamma(1) = 1$.

0.2.

(i) Write down the Schrodinger equation for the potential given by [4]

$$V(x) = -V_0 \text{ if } |x| \le l, \text{ and } V_0 > 0,$$

= 0 if $|x| > l,$

- (ii) Solve the Schrodinger equation to determine the odd [i.e. $\psi(-x) = -\psi(x)$] bound energy eigenstates. [12]
- (iii) Write down the normalization integral for the above energy states. [4]

 Note: Do not attempt to evaluate the integral.
- (iv) What do you get in the limit $V_0 \to \infty$ while keeping the energy [5] $E' = E + V_0$ finite?

0.3.

Following wave functions

(a)
$$u_0(x,y) = A \exp \left[-\frac{\alpha^2 (x^2 + y^2)}{2} \right]$$

(b)
$$u_1(x, y) = B x y \exp \left[-\frac{\alpha^2 (x^2 + y^2)}{2} \right]$$

(c)
$$u_2(x,y) = C (2\alpha^2 y^2 - 1) \exp \left[-\frac{\alpha^2 (x^2 + y^2)}{2} \right]$$

are the solutions of the eigenvalue problem $Hu_n(x,y) = E_n u_n(x,y)$

with
$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{\hbar^2 \alpha^4}{2m} (x^2 + y^2).$$

0.4.

(a) show that

(i))
$$[f(\vec{r}), p_x] = i\hbar \frac{\partial}{\partial x} f(\vec{r})$$
 where $\vec{r} = \hat{i} x + \hat{j} y + \hat{k} z$. [3]

(ii)
$$[x, p_v^3] = 3i h p_v^2$$
 [5]

(iii)
$$[L_{+}, L_{-}] = 2\hbar L_{z}$$
 [5]

where
$$L_+ = L_x + i L_y$$
 and $L_- = L_x - i L_y$

(b) The Hamiltonian of a system with moment of inertia β is given by the expression

$$H = \frac{1}{2\beta} (L_x^2 + L_y^2)$$

Here L is orbital angular momentum.

- (i) Show that $[L^2, L_i]=0$ for i=x,y,z. [3]
- (ii) Show that $[H, L^2] = 0$ and $[H, L_z] = 0$. [4]
- (iii) Show that the functions $Y_{\ell}^{m}(\vartheta, \varphi)$ are eigenfunctions of H.
 - Find an expression for the eigenvalue of the Hamiltonian. [5]

Q.5. The stationary Schrödinger equation for a particle moving in a central potential V(r) is

$$E\Phi(r,\vartheta,\varphi) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} \right) + \frac{1}{2mr^2} \hat{L}^2 \Phi(r,\vartheta,\varphi) + V(r)\Phi(r,\vartheta,\varphi),$$

where \hat{L} is the angular momentum operator for the particle's motion.

(a) Write the wave function $\Phi(r,\theta,\phi)$ as a product of a radical [15] function R (r) and an angular momentum eigenfunctions $Y_r^m(\theta,\phi)$,

[5]

and derive the differential equation for R(r). State the boundary conditions on R(r).

(b) An electron in the Coulomb field of a proton with Hamiltonian H is in a state described the wave function

$$\phi = \frac{1}{5} \Big[4 \, \psi_{100} + 3 \, \psi_{211} \, \Big]$$

(ii) What is the expectation value of
$$L^2$$
 and L_z ? [5]

Note that $\psi_{nlm} = R_{nl}(r) Y_l^m(\vartheta, \varphi)$ is the eigenfunction of H with energy

$$\frac{E_0}{n^2}$$
 where E_0 is a constant and

n = principal quantum number,

I = angular momentum quantum number

m = projection of angular momentum.

and
$$\int \psi_{n'l'm'}^* \psi_{nlm} d\tau = \delta_{n'n} \delta_{l'l} \delta_{m'm}$$

@@@@END OF EXAMINATION@@@@

APPENDIX:

Useful Information:

[
$$r_i$$
, p_j] = $i\hbar$ δ_{ij} where r_i = (x , y , z) and p_i = (p_x , p_y , p_z),
[L_x , L_y] = $i\hbar$ L_z , [L_y , L_z] = $i\hbar$ L_x , [L_z , L_x] = $i\hbar$ L_y where $\vec{L} = \vec{r} \times \vec{p}$,

The functions $Y_i^m(\vartheta, \varphi)$ are eigenfunctions of L^2 and L_z operators with the property

$$L^{2} Y_{\ell}^{m}(\vartheta, \varphi) = \ell(\ell+1) \hbar^{2} Y_{\ell}^{m}(\vartheta, \varphi)$$

$$L_{z} Y_{\ell}^{m}(\vartheta, \varphi) = m \hbar Y_{\ell}^{m}(\vartheta, \varphi)$$

Useful Integrals:

$$\int_{0}^{\infty} \exp(-t^{2}) dt = \frac{\sqrt{\pi}}{2}$$

$$\int_{0}^{\infty} t^{2n+1} \exp(-at^{2}) dt = \frac{n!}{2a^{n+1}} \quad \text{with Re a > 0, n = 0,1,2,...}$$

$$\int_{0}^{\infty} t^{2n} \exp(-at^{2}) dt = \frac{1.3.5.....(2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$
with Re a > 0, n = 0,1,2....

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$

$$\int \sin(mx)\sin(nx)dx = \frac{1}{2} \left[\frac{\sin\{(m-n)x\}}{(m-n)} - \frac{\sin\{(m+n)x\}}{(m+n)} \right]$$

$$\int \sin(mx)\cos(nx)dx = -\frac{1}{2}\left[\frac{\cos[(m-n)x]}{(m-n)} + \frac{\cos[(m+n)x]}{(m+n)}\right]$$

 $\int\limits_{-\infty}^{\infty} H_n(\xi) \, H_m(\xi) \, \exp(-\xi^2) \, d\xi = \pi^{\frac{1}{2}} \, 2^n \, n! \, \delta_{nm} \quad \text{where } H(\xi) \text{ are Hermite}$ polynomials and are real.