UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

MAIN EXAMINATION 2005

TITLE OF PAPER

ELECTRONICS (PAPER 1)

COURSE NUMBER

P310 (i)

:

:

:

:

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

- (a) An RLC bandpass filter is to be designed using a 10 mH inductor whose resistance is 75 Ω . The centre frequency of the filter is to be 25 kHz.
 - (i) What value of capacitance should be used? (4 marks)
 - (ii) If the bandwidth of the filter is to be made less than 2500 Hz, what is the quality factor? (3 marks)
- (b) For the high-pass filter shown in Fig. 1.1:
 - (i) Find the cut-off frequency in hertz. (3 marks)
 - (ii) Find the magnitude of v_{out} when v_{in} has a frequency of 15 kHz and of 100 kHz.(5 marks)
 - (iii) Find the phase angle between v_{out} and v_{in} , when v_{in} has a frequency of 20 kHz and that of 80 kHz. (5 marks)
- (c) An RC low-pass filter is to be designed to create a 60° phase lag in a 2.5 kHz signal. If the filter capacitance is 0.2 μF, what value of resistance should be used? (5 marks)

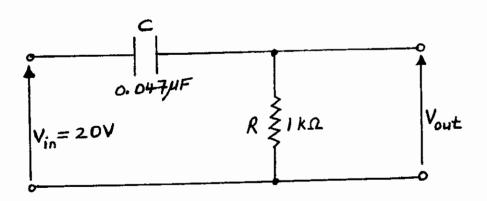


Fig. 1.1

OUESTION 2

(a) The drain current in a junction field effect transistor (JFET) amplifier varies by ± 1 mA when a signal voltage with a peak-to-peak value of 2 V is applied at the input of the amplifier.

Calculate the transconductance, g_m of the transistor.

(3 marks)

- (b) The I-V characteristics of a **p-channel** JFET may be plotted when the following equipment/components are available for current and voltage measurements: d.c. power supplies, potentiometers, a d.c. ammeter and a d.c. voltmeter.
 - (i) Draw and label the diagram of a circuit you would use to measure the values of current and voltage. (4 marks)
 - (ii) Sketch typical transfer and drain characteristic curves for this type of JFET. Label them.

(5 marks)

- (c) (i) Draw and label a self-biasing common-source amplifier which utilises an n-channel junction field effect transistor. The diagram should include all capacitors and resistors required in the circuit. (3 marks)
 - (ii) Draw a small signal equivalent circuit and label it. State the significance of each element shown in the equivalent circuit.

(10 marks)

OUESTION 3

- (a) With reference to a labelled schematic diagram, discuss the principle of operation of an npn bipolar junction transistor. (9 marks)
- (b) The values of the leakage current I_{CEO} in a bipolar junction transistor at various junction temperatures are listed below:

Junction temperature (°C) 20 30 40 50 60 Leakage current, I_{CEO} (μA) 60 120 240 480 960

This transistor has $h_{FE} = 100$. It is used as an amplifier in common-emitter connection with dc bias current of 30 μ A.

Calculate the change in collector current, I_C as the junction temperature rises from 20 °C to 60 °C. (7 marks)

(c) With the aid of a small signal model, derive the expression below which represents the voltage gain of an emitter follower.

$$A_{V} = \frac{\left(h_{fe} + 1\right)R_{L}}{r_{\pi} + \left(h_{fe} + 1\right)R_{L}}.$$

(9 marks)

QUESTION 4

- Suppose that you were required to build the op-amp circuit shown in Fig. 4.1, which (a) gives a voltage gain of 100. What values of R₁ and R₂ would you need for this purpose? (4 marks)
- (b) Use operational amplifiers to design circuits which correspond to each of the following ideal relationships between the output and the input voltage(s):

(i)
$$v_0 = -4 \times 10^{-2} \int v_1 dt$$
 (7 marks)

(ii)
$$v_0 = -2 \times 10^4 \frac{dv_1}{dt}$$
 (7 marks)

(iii)
$$v_0 = -(3v_1 + 5v_2 + v_3)$$
 (7 marks)

where v_1 , v_2 and v_3 are input voltage signals. (Note: determine suitable values of resistors and capacitors)

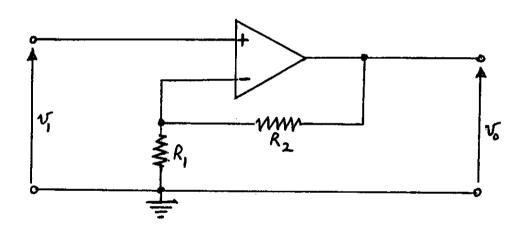


Fig. 4.1

QUESTION 5

- (a) Calculate the diode current in the circuit shown in Fig. 5.1, assuming that the turn-on voltage is 0.7 V. (4 marks)
- (b) With reference to amplifiers, explain what is meant by degenerative feedback.

 (3 marks)
- (c) Consider an amplifier with an open-loop gain of -700. Negative feedback is applied to the amplifier and the feedback factor is 0.04.
 - (i) What would be the gain with feedback? (3 marks)
 - (ii) Calculate the closed-loop gain if the open-loop gain falls by 20%. (5 marks)
 - (iii) Calculate the percentage change in closed-loop gain from the results obtained in (i) and (ii). (2 marks)
- (d) (i) Draw the schematic diagram of a phase-shift oscillator and label it. (3 marks)
 - (ii) Discuss, briefly, the principle of operation of this oscillator and comment on the attenuation effect of the phase-shift ladder network as well as the Barkhauszen criterion. (5 marks)

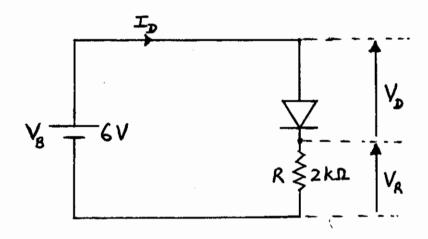


Fig. 5.1