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P272 MATHEMATICAL METHODS FOR PHYSICIST
Question one
(a (@) GivenP(-3, - 4, - 5) in Cartesian coordinate system, find its cylindrical and

spherical coordinates . ( 4 marks }

(i)  GivenP( 10, 120°, 240°) in spherical coordinate system, find its Cartesian and

cylindrical coordinates . Express €, = € @, + €,4a, + €, a, and find the

values of a, , a, and a ( 6 marks )

(b)  Express € ,¢, and &, intermsof € ,€, and €  and deduce that

a2 _ “Q+" 9ﬂ 9 mark
P €, a1 e, COs dr (9 marks )

() Given f=x*+)* ,find the magnitude and directionof V /' at
x=1,y=1and z=0 .Draw f =1 and f =4 twoequal f surfaces

on z=0 plane(ie, x-y plane) andindicate on the diagram what should be the

direction of V f and also estimate the approximated magnitude of v [ atthe

givenpoint x=1,y=1 and z=0 from your diagram . ( 6 marks )




Question two

(a) Fdr the rectangular coordinate system, prove the following vector identity :
V x (6 X ﬁ’)z 6(6 -13')— ViF
where F=&F, +&F, +&F, and
VF=8 V'F, +& V'F +¢&V'F, ( 10 marks )
®) Given F=¢& (x*+)*)+€ () +2°)+ & (2" + x*)
(i)  evaluate the value of ﬁ EFeodl where =1 +5L+1l ison z=0

(ie, x~y plane) andisshown below :
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( 8 marks)




Question two (continued)

L, :y=0,x from 0 to 3
I, :x=3,y from0 to 3

I, i y=x,x from31to0

(i) Find V x F and then evaluate the value of ”S (-V- x F )O ds where

S is bounded by the given closed loop !/

in (i) .

( 7 marks )




Question three
The following non-homogeneous differential equation represents a simple harmonic oscillator of

mass 1= 2 kg and spring force constant K = 26 — forced to oscillate in an viscous fluid
m

d’x(t) o dx(t)

2
dt? dt

+ 26 x(t) = f(1)

where x(t) : displacement from its resting position

d x(1)

8
dt

. retardation force by the viscous fluid

f(t) : externally applied driving force

(a)  Find and write down the general solution to the homogeneous part of the above given

d*x() _ dx(0)
di® +8 dt

differential equation , i.e., 2 +26x(t)=0 (5 marks)

(b)  Ifthe driving force is given as £ (¢) = 8 sin (5 t) , set the particular solution of the given

non-homogeneous differential equation as x(¢) = &, cos(5 t) + k, Sin(S t) and find

the values of &, and k, , ' ( 10 marks )
© @ Combine the obtained solutions in (a) and (b) to write down the general solution of
the given non-homogeneous differential equation, : ( 2 marks )
i} N . d x(t)
(i)  If the given initial conditions for the system are x(0)= 4 and Y =0,
1=0

find the values of the arbitrary constants in (c)(1) and thus the specific solution for

the given system. ( 8 marks )




(@)

(b)

Question four

Given the three-dimensional Laplace equation in cylindrical coordinate system as

1 5[ 5f(p,¢,z)]+L0"2f(p,¢,Z) 7 1p.4.2)

+
pop Sy P’ o4° 3z
Setting f(p.¢4,2z)= F(p)G(¢) H(z) and applying the technique of separation of

variables , deduce three ordinary differential equations for F(p), G(¢) and H(z)

from the given partial differential equation . ( 8 marks )

Given the following differential equation ij}%;"(;l + 4 y(x) = 0 , using the power

series method , i.e, set  y(x)= i a, x™" with a,#0 and substituting it back into

the given differential equation "

() requiring the coefficients of the two lowest power terms for x ,ie., x*"% and
x*~! | to be zero and thus write down the indicial equations . From these
equations deduce that s=0,1 and a;=0 , ( 7 marks )

(i)  requiring the coefficients of all the rest power terms for x ,ie., x'*” with
n=0,1,2,3,--- | tobe zero and deduce the recurrence relation ,

( 4 marks )

(@) for s=1 and a;=0 ,set a,=1 and using the recurrence relation in (b),

find the values of a, ,a; ,4a, ,a; ,a, and write down one of the independent
6

solutions of the given differential equationup to 7= 6 terms, i.e., Z a x"* .

n=0

{ 6 marks )




(2)

(b)

Question five

d* x N
=—-kx , and m=3 kg & k=27 —

Given m
dt? m

)] find the values of the angular frequency , frequency and period of the given simple
harmonic oscillator system , { 3 marks)

(1)  write down the general solution of the given problem . ( 2 marks )

Two simple harmonic oscillators ( one is represented by m, and k&, and the other
represented by m, and k, )are jointed together by a spring of spring constant

K . The equations of motion for the system are :

m dz;ctlz(t) == (k + K)x, (1) + K x,(t)
m 8D K0y )50

where x,(f) and x,(f) are the displacement from their respective resting position .

If m=1kg , m=3kg , kl=3’—n" , k2=9-’; and
N

K=9 —
m

>

)] show that the coupled differential equations for the system can be simplified to be :

[ 2

%th‘z(—t): “12 x,(6) + 9 x,(f)
e ( 2 marks )
“_6722(_):33610)_6)62(0




Question five (continued)
(i) setting x,(#)= X, €' and x,(¢)= X,e'®" , and showing deduction details ,
find the eigenfrequencies @ of the given coupled system , ( 6 marks )
(i)  find the eigenvectors of the given coupled system corresponding to each

eigenfrequencies found in (b)(ii), ( 6 marks )

(iv)  find the normal coordinates of the given coupled system corresponding to each

eigenfrequencies found in (b)(ii} . ( 6 marks)




Useful informations
The transformations between rectangular and spherical coordinate systems are :

‘ r=qx’+y°+2°
x = rsinfdcosg T3
J¥i+y
. . 6 -1

y = rsinésins¢g 19 = tan
z
z=rcosd
¢ = tan™ 2
k X
The transformations between rectangular and cylindrical coordinate systems are :
o[22
x= pcosg P=X tY
y = psing <¢=um4f
2=z z=z
— l 1 1
hl ﬁ hz é,uz h3 c?u3
- o] [ﬁ(ﬁhzha NLGLYON é'(F,,hlhz)J
hl hz h3 51‘1 ﬁuz ﬁuj
I {ﬂ(F;hg) i a(thz)] , & ( AFR) é’(EhB)]
hyhy Ouy ou, hh\ Jw 7
G [ﬂ(thZ) ) a(Flhl)J
hlhz aul ﬁuz

where F=8 F,+& F,+& F, and

(u1 > Uy, u3) represents (x .V, Z) for rectangular coordinate system
represents (p . P, z) for cylindrical coordinate system
represents (r .0, ¢) for spherical coordinate system

(é'l , €5, 53) represents (E, . €, 5 Ez) for rectangular coordinate system
represents (Ep €4 > z) for cylindrical coordinate system
represents (5, €, §¢) for spherical coordinate system

(h1 W, h3) represents (l .1, l) for rectangular coordinate system

represents (l .0 l) for cylindrical coordinate system

represents (1 JF L rsin 9) for spherical coordinate system
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