University of Eswatini

FINAL SEMESTER I EXAMINATION, 2020/2021

M.Sc. Mathematics

Title of Paper

: Advanced Applied Analysis

Course Number : MAT633

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions. Answer ANY FIVE (5) questions.
- 2. You can answer questions in any order.
- 3. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1 [20 Marks]

- 1 (a) Suppose X is a vector space over a field \mathbb{F} .
 - i. Write down the conditions for X to be a normed vector space together with the real valued function $||.||: X \to [0, \infty)$.

[4 marks] [3 marks]

ii. Which properties determine X as a Banach space?

(b) Let X = C[0, 2], for all $f \in C[0, 2]$ defined a norm on X by

 $||f||_1 = \int_0^2 e^x |f(x)| dx.$

Evaluate $||f||_1$, if $f(x) = \frac{1}{2}x$.

[4 marks]

(c) Prove that the real sequence space $\ell_p(1 \leq p < \infty)$ is complete.

[9 marks]

QUESTION 2 [20 Marks]

2 (a) Determine the matrix norm subordinate to

i. the one norm and

[3 marks]

ii. the infinity norm

[3 marks]

for the following matrix:

$$B = \begin{pmatrix} 3 & 0 & 1 \\ 2 & -3 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

(b) Show that the functional defined on continuous space C[a, b] by

$$f(x) = \int_{a}^{b} x(t)k(t)dt$$

where $(k \in C[a, b]$ is fixed) is linear and bounded.

[6 marks]

(c) Let X and Y be normed linear spaces over a field \mathbb{F} and $T: X \to Y$ a linear map. Prove that T is continuous at some point in X if and only if T is bounded on X.

[8 marks]

QUESTION 3 [20 Marks]

3 (a) Give a detailed explanation (Definition) what is meant by that the functions f_n converge uniformly and pointwisely to f on the interval [a, b] as $n \to +\infty$.

[6 marks]

(b) Let $f_n: [0, \frac{2}{3}] \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for all $x \in [0, \frac{2}{3}]$. Prove that f_n converges uniformly to f = 0 in $[0, \frac{2}{3}]$.

[5 marks]

(c) Let K be a compact metric space. Prove that C(K) is complete.

[9 marks]

QUESTION 4 [20 Marks]

4 (a) Let X = C[0,1]. Define $\langle .,. \rangle : X \times X \to \mathbb{C}$ for each $f,g \in X$ the inner product on X by $\langle f,g \rangle = \int_0^1 \overline{f(t)}g(t)dt$, where $\overline{f(t)}$ is the conjugate of f(t). Compute $\langle .,. \rangle$, when f(t) = g(t) = 1 + it.

[5 marks]

(b) Let $x, y \in X$ where X is an inner product space. Find ||y|| if

$$||x|| = \sqrt{17}, \ ||x+y|| = 4 \ \text{and} \ ||x-y|| = 6.$$

[5 marks]

(c) Let $X = \mathbb{R}^3$. For any $x, y \in \mathbb{R}^3$, define, the inner product and norm on \mathbb{R}^3 by

$$\langle x,y
angle = x^T y \ ext{ and } \ ||x||_2 = \sqrt{\sum_{i=1}^3 x_i^2}$$

respectively. Given a set of three linearly independent vectors in \mathbb{R}^3

$$x^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \quad x^{(2)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad x^{(3)} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

Using the Gram Schmidt procedure, generate an orthonormal set.

[10 marks]

QUESTION 5 [20 Marks]

5 (a) Let $f_n:[a,b]\to\mathbb{R}$ be a sequence of continuous function. Suppose that $\{f_n\}$ converges uniformly to some $f:[a,b]\to\mathbb{R}$ on [a,b]. Prove that

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx.$$

[12 marks]

(b) Let $f_n(x) = \frac{2n + \sin nx}{3n + \sin^2 nx}$, for $x \in \mathbb{R}$. If $\{f_n\}$ converges uniformly on \mathbb{R} , then compute

$$\lim_{n\to\infty}\int_0^{3\pi}f_n(x)dx.$$

[8 marks]

QUESTION 6 [20 Marks]

6 (a) Let (X, d) be a metric space and $f: X \to X$ a mapping on X.

i. Give a detailed explanation (Definition) for f to be a contraction mapping on X.

[4 marks]

ii. Prove that every continuous mapping is a contraction mapping.

[5 marks]

(b) Let $T: C[0,1] \to C[0,1]$ be defined by

$$T(u)(x) = \frac{1}{2} \int_0^x u(s) ds$$

for all $u \in C[0,1]$ and for all $x \in [0,1]$. Prove that T is a contraction mapping on C[0,1] with sup-metric.

[6 marks]

(c) State the Contraction Mapping Principle.

[5 marks]

QUESTION 7 [20 Marks]

7 (a) Find the least squares solution of the points $\{(1,2),(3,5),(4,5),(6,8),(6,9),(7,10)\}$ in xy-plane.

[6 marks]

(b) Using Weierstrass M-Test, prove that the series

$$\sum_{n=1}^{\infty} \frac{x^3}{3 + n^2 x^2}, \ x \in \mathbb{R}$$

converges uniformly on \mathbb{R} .

[5 marks]

(c) Let $1 < p, q < \infty$ be conjugate exponents, (X, Σ, μ) a measure, if $f \in L^p(X, \mu)$, $g \in L^q(X, \mu)$ with $p \in (1, +\infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$. Prove that

 $fg \in L^1(X,\mu)$ and $\int_X |fg|d\mu \le ||f||_p ||g||_q$.

[9 marks]

END OF EXAMINATION