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QUESTION 1 [20 Marks]

1 (a) Suppose X is a vector space over & field IF.

i, Write down the conditions for X to be a normed vector space together
with the real valued function {[.]| : X — [0, 00). [4 marks]

ii. Which properties determine X as a Banach space” [3 marks]
(b) Let X = C[0,2], forall f € C [0,2] defined a norm on X by

||f||1=/0 | f(z}|dz.

Evaluate || /|1, if f(z) = 32. [4 marks]
(c) Prove that the real sequence space £,(1 < p < o0) is complete. [9 marks]|

QUESTION 2 (20 Marks]

2 (a) Determine the matrix norm subordinate to

i. the one norm and [3 marks]
ii. the infinity norm [3 marks)
for the following matrix:
3 0 1
B=12 -3 0
1 0 -1

(b} Show that the functional defined on continuous space Cla, b] by

b
flw) = / +(t)(t)dt

where (k € Cla, b] is fixed) is linear and hounded. [6 marks}

(c) Let X and Y be normed linear spaces over a fleld F and 1" XY
a linear map. Prove that T is continuous at some point in X if and only if
T is bounded on X. [8 marks]

QUESTION 3 (20 Marks]

3 (a) Give a detailed explanation (Definition) what is meant by that the
functions f, converge uniformly and pointwisely to f on the interval

la,b] as n — +oo. [6 marks)
(b) Let fy : [0, 2] — R be defined by fa(w) = 2" for all z € [0,3]. |

Prove that f, converges uniformly to f =0 in [0, 2. [5 marks]
(¢) Let K Dbe a compact metric space. Prove that C(K) is complete. [9 marks]

QUESTION 4 {20 Marks]

4 (a) Let X = C[0,1]. Define {,):XxX—=+Cloreach f,g € X the

inner product on X by (f, g) = fol Flt)g(t)dt, where F(t) is the
conjugate of f(t). Compute (..}, when f (t) = g{t) = L +1t. [5 marks]
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(b) Let x,y € X where X is an inner product space. Find ||y|| if
llzl| = V17, |le+yll =4 and Yz —yll=6.

[5 marks

(c) Let X =R3. For any z,y € R3, define, the inner product and norm on R3
by

(@,y) =2"y and [lzlls=.

respectively. Given a set of three linearly independent vectors in R?

1 1 2
#Z0 =10}, 2@ =1{0}; 2@ = |1
1 0 0
Using the Gram Schmidt procedure, generate an orthonormal set. (10 marks]

QUESTION 5 [20 Marks]

5 (a) Let f,: [a,b] — R be a sequence of continuous function. Suppose that
{fu} converges uniformly to some f : [a,b] —+ R on [a,b]. Prove that

lim /: fnlz)dz = /: ﬂlggof'n,(:y)dw = /: f(z)dz.

n—co

[12 marks]
(b) Let fn(z) = Z2Emnt for z € R.

3nisin® na’
If {f} converges uniformly on’ R, then compute

3w
’}13;10 A falz)d.

[8 marks]

QUESTION 6 [20 Marks]

6 (a) Let (X,d) be a metric space and f: X —+ X amapping on X.
. Qive a detailed explanation (Definition) for f to be a contraction
mapping on X. [4 marks)|
ii. Prove that every continuous mapping is a contraction mapping. [5 marks]

(b) Let T: C[0,1] = C[0,1} be defined by

T{u)(z) = %/Om u{s)ds

for all w € C[0,1] and for all z € {0,1]. Prove that T is a contraction
mapping on C[0, 1} with sup-metsic. [6 marks]

(c) State the Contraction Mapping Principle. [5 marks]
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QUESTION 7 [20 Marks]

7 (a) Find the least squares solution of the points
{(1,2),(3,5), (4,5),(6,8),(6,9),(7,10)} in xy—plane.
{(b) Using Weierstrass M-Test, prove that the series

Zg_,_nzmz’ zcR
=1

converges uniformly on R.

(¢} Let 1 < p,q < co be conjugate exponents, (X, X, 4) a measure,
if felr(X,pn), g€ LYX,p) with p € (1, +0c0) and % + % = 1.
Prove that

Fg € LMX, ) and fX Faldi < 1111l 19l

END OF EXAMINATION

[6 marks]

[5 marks]

[9 marks|




