University of Eswatini

Main Examination 1, 2020/2021

M.Sc. Mathematics 1

Title of Paper

: STOCHASTIC DIFFERENTIAL EQUATIONS

Course Number

: MAT 632

Time Allowed

: Three (3) Hours

Instructions:

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Start each new major question (A1-A4, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.
- 6. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1.

(a.) State and prove Borel-Cantelli Lemma.

[10 marks]

QUESTION A2.

(a.) Define a Borel σ -algebra generated by $\mathfrak{U} \subseteq \Omega$.

[3 marks]

(b.) Suppose $G_1, G_2, G_3, ..., G_n$ are disjoint subsets of Ω

such that $\Omega = \bigcup_{i=1}^n G_i$. Prove that a family G consisting of

 \emptyset and all unions of $G_1, G_2, G_3, ..., G_n$ constitute a σ - algebra on Ω .

[7 marks]

QUESTION A3.

(a.) Evaluate $I = \int_0^T B(t) dB(t)$

[4 marks]

- (b.) Evaluate:
- i. $E[B_t^8]$

[3 marks]

ii. $E[B_t^{26}]$

[3 marks].

QUESTION A4.

Write Z(t) in the form

$$dZ(t) = \mu(t, \omega)dt + \sigma(t, \omega)dB(t)$$

(i.)
$$Z(t) = t^5 B^3(t)$$
.

[3 marks]

(ii.)
$$Z(t) = t^7 + 3e^{2B(t)}$$
.

[3 marks]

(iii.)
$$Z(t) = \ln(t)e^{2B(t)}$$
.

[4 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2

a.) State the Ito representation theorem.

[4 marks]

(b.) Prove that if

$$dZ(t) = Z(t)\theta(t,\omega)dB(t)$$

then Z(t) is a martingale for all $t \leq T$ provided that

$$Z(t)\theta_k(t,\omega) \in \nu(0,T) \quad 1 \le k \le n.$$

[16 marks]

QUESTION B3

a.) Define an adapted process.

[2 marks]

b.) Define the Ito integral.

[5 marks]

c.) State and prove the Ito isometry for elementary

and bounded function $\phi(t,\omega)$.

[13 marks]

QUESTION B4.

(a.) State the Markov property for Ito diffusions.

[4 marks]

(b.) Evaluate: $\int_0^T t^2 B^3(t) dB(t)$.

[16 marks]

QUESTION B5.

(a.) Solve:

$$dX(t) = \alpha X(t)dt + \rho X(t)dB(t) - dH(t, \omega, X(t))$$

Given that $dH(t, \omega, X(t)) \sim kX(t)dt$.

[15 marks]

(b.) Evaluate: E[X(t)].

[5 marks]

QUESTION B6.

(a.) Solve:

$$dX(t) = \alpha X(t)dt + \rho dB(t) \bullet H(t, \omega, X(t))$$

Given that $H(t, \omega, X(t)) \sim kX(t)$. (b.) Evaluate: $\sigma^2(X(t))$.

[15 marks] [5 marks]

END OF EXAMINATION