University of Swaziland

Main L Examination, 2020/2021

MSc.I

Title of Paper : Special Topics In Financial Mathematics

Course Number : MAT622

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions.

- 2. Answer ANY FOUR (4) questions.
- 3. Show all your working.
- 4. Start each new major question on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.
- 6. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

ANSWER ANY FOUR QUESTIONS

QUESTION A1 [25 Marks]

(a) A perpetuity consists of yearly increasing payments of (1+jk), (1+j)2, (1+j)3, etc., commencing at the end of the first year. At an annual effective interest rate of 4%, the present value one year before the first payment is 51. Determine j,

[9 Marks]

(b) If $v(t) = 2^{-t}$, and given cash flow vectors $\mathbf{c} = (1, 2, 3)$ and $\mathbf{e} = (2, K, 1)$. Find K so that \mathbf{c} and \mathbf{e} are actuarially equivalent with respect to v.

[6 Marks]

- (c) The death benefit on a life insurance policy can be paid in four ways. All payments have the same present value:
 - (i) A perpetuity of 120 at the end of each month, first payment one month after the moment of death;
 - (ii) Payments of 365.47 at the end of each month for n years, first payment one month after the moment of death;
 - (iii) A payment of 17,866.32 at the end of n years after the moment of death; and
 - (iv) A payment of X at the moment of death.

Calculate X.

[10 Marks]

QUESTION A2 [25 Marks]

(a) A survival model follows Makeham's law, so that

$$\mu_x = A + Bc^x \text{ for } x \ge 0.$$

(i) Find tp_x

[5 Marks]

(ii) Suppose you are given the values of $_{10}p_{50}$, $_{10}p_{60}$ and $_{10}p_{70}$. Find c.

[6 Marks]

- (b) A life insurer assumes that the force of mortality of smokers at all ages is twice the force of mortality of non-smokers.
 - (i) Show that, if * represents smokers' mortality, and the 'unstarred' function represents non-smokers' mortality, then

$$_tp_x^* = (_tp_x)^2$$

[7 Marks]

(ii) Calculate the variance of the future lifetime for a non-smoker aged 50 and for a smoker aged 50 under Gompertz' law

[7 Marks]

QUESTION A3 [25 Marks]

(a) Assume that the forces of mortality and interest are each constant and denoted by μ and δ , respectively. Determine $Var(v^T)$ in terms of μ and δ .

[7 Marks]

- (b) Given:
 - (a) The survival function is S(x) = 1 x/100 for $0 \le x \le 100$...
 - (b) The force of interest is $\delta = 0.10$.
 - (c) The death benefit is paid at the moment of death.

Calculate the net single premium for a 10-year endowment insurance of 50,000 for a person age x = 50.

[8 Marks]

1. A 3-year term life insurance to (x) is defined by the following table

Year t	Death Benefit	q_{x+t}
0	3	0.20
1	2	0.25
2	1	0.50

Given: v=0.9, the death benefits are payable at the end of the year of death and the expected present value of the death benefit is Π . Calculate the probability that the present value of the benefit payment that is actually made will exceed Π .

[10 Marks]

QUESTIONA4 [25 Marks]

(a) A farmer annually produces x_k units of a certain crop and stores $(1 - u_k)x_k$ units of his production, where $0 \le u_k \le 1$, and invests the remaining $u_k x_k$ units, thus increasing the next years production to a level x_{k+1} given by

$$x_{k+1} = x_k + W_k u_k x_k, \ k = 0.1, \cdots, N-1$$

The scalars W_k are bounded independent random variables with identical probability distributions that depend neither on x_k nor on u_k . Furthermore, $E\{W_k\} = \bar{w} > 0$. The problem is to find the optimal policy that maximizes the total expected product stored over N years:

$$E\left(X_N+\sum_{k=0}^{N-1}(1-u_k)X_k\right).$$

(a) Compute $J(T-1, x_{T-1})$.

[5 Marks]

(b) Compute $J(T-2, x_{T-2})$.

[5 Marks]

(c) Show that an optimal control law is given by:

(i) If $\bar{w} > 1$, then $u_0(x_0) = \cdots = u_{N-1}(x_{N-1}) = 1$.

(ii) If $0 < \bar{w} < 1/N$, then $u_0(x_0) = \cdots = u_{N-1}(x_{N-1}) = 0$.

[15 Marks]

QUESTION A5 [25 Marks]

(a) Z is the present-value random variable for an insurance on the independent lives of (x) and (y) where

$$Z = \begin{cases} v^{T(y)}, & \text{if } T(y) \le T(x) \\ 0, & \text{otherwise} \end{cases}$$

- i. (x) is subject to a constant force of mortality of 0.07.
- ii. (y) is subject to a constant force of mortality of 0.09.
- iii. The force of interest is a constant $\delta = 0.06$.

Calculate Var(Z).

[8 Marks]

(b) Given the joint distribution of claims Y_1 and Y_2 . Compute the probability distribution of $Y_1 + Y_2$.

	Y_1	
Y_2	0	1
0	0.38	0.17
1	0.14	0.02
2	0.24	0.05

[9 Marks]

(c) A fully discrete last-survivor insurance of 1 is issued on two independent lives each age x. Level net annual premiums are paid until the first death. Given:

i.
$$A_x = 0.4$$

ii.
$$A_{xx} = 0.55$$

iii.
$$a_x = 9.0$$

Calculate the net annual premium

[8 Marks]

QUESTION A6 [25 Marks]

(a) The aggregate claims S are approximately normally distributed with mean μ , and variance σ^2 . Show that thep-loss reinsurance net premium $\rho(\beta) = E[(X - \beta)^+]$ is given by

$$\rho(\beta) = (\mu - \beta)\Phi\left(\frac{\mu - \beta}{\sigma}\right) + \sigma\phi\left(\frac{\mu - \beta}{\sigma}\right)$$

where Φ and ϕ are the standard normal distribution and density functions.

[10 Marks]

(b) Consider the compound model described by formula $S = X + ... + X_N$ where N, X_i are independent, and X_i are identically distributed. Show that E[S] = E[N]E[X] and

$$E[S^2] = E[N^2]E[X]^2 + E[N](E[X^2 - E[X]^2).$$

where $M_N(t)$ where $M_x(t)$ are the moment generating functions of N and X.

[15 Marks]