University of Eswatini

MAIN EXAMINATION, 2020/2021

M.Sc. in Mathematics

Title of Paper

: Optimization

Course Number

: MAT603

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions.
- 2. Answer ANY FIVE (5) questions.
- 3. Show all your working.
- 4. Start each new major question (Q1, Q2, ..., Q7) on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1 [20 Marks]

- (a) Give clear definitions of the following terms:
 - (i) A convex set.
 - (ii) A convex function.
 - (iii) A concave function.
- (b) Let $h: \mathbb{R}^n \to \mathbb{R}$ be a function of many variables and let $k: \mathbb{R} \to \mathbb{R}$ be a function of one variable. Suppose h and k are both convex functions. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and let $y \in \mathbb{R}$. Define a function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ as follows:

$$f(x,y) = h(x) + k(y).$$

Show that f is a convex function.

(c) For each function below, determine whether it is concave, convex or neither on the given set.

(i)
$$f(x_1, x_2) = 2x_1^2 - 5x_1x_2 + 3x_2^2$$
 on \mathbb{R}^2 .

(ii)
$$f(x_1, x_2) = -x_1^2 - 2x_2^2$$
 on \mathbb{R}^2 .

(iii)
$$f(x_1, x_2) = -x_1 - 2x_2$$
 on \mathbb{R}^2 . (3)

Question 2 [20 Marks]

(a) Use the method of steepest descent to approximate the solution to the problem:

minimise
$$f(x_1, x_2) = (x_1 - 2)^2 + x_1 + x_2^2$$
.

Begin at the point $(\frac{5}{2}, \frac{3}{2})$. (8)

(b) Find all local maxima, local minima, and saddle points of

$$f(x_1, x_2) = 3x_1^2x_2 + x_2^3 - 3x_1^2 - 3x_2^2 + 2.$$

(12)

(5)

ACADEMIC YEAR: 2020/2021 PAGE 2

Question 3 [20 Marks]

(a) Use Lagrange multipliers to solve the following problem.

minimise
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$

subject to: $x_1 + x_2 + x_3 = 1$.

(10)

(5)

(b) Use K-T conditions to solve the following problem.

minimise
$$f(x_1, x_2) = (x_1 - 4)^2 + (x_2 - 4)^2$$

subject to: $x_1 + x_2 \le 4$
 $x_1 + 3x_2 \le 9$. (10)

Question 4 [20 Marks]

(a) Write down the dual of the following linear programming problem without first converting it to a normal maximisation problem.

maximise
$$z=x_1-2x_2$$

subject to: $x_1+x_2\leq 4$,
 $x_1-x_2=4$,
 $x_1\geq 0$, x_2 urs.

(b) Consider the following linear programming problem:

maximise
$$z = 3x_1 + 6x_2 + 2x_3$$

subject to: $3x_1 + 4x_2 + 2x_3 \le 200$,
 $x_1 + 3x_2 + 2x_3 \le 100$,
 $x_1, x_2, x_3 \ge 0$.

Find the dual and solve the dual graphically. Use complementary slackness to find the optimal solution to the primal. (15)

Question 5 [20 Marks]

(a) Consider the following linear programming problem:

maximise
$$z=2x_1-x_2+x_3$$

subject to: $3x_1+x_2+x_3\leq 50,$
 $x_1-x_2+2x_3\leq 10,$
 $x_1+x_2-x_3\leq 20,$
 $x_1,x_2,x_3\geq 0.$

When the above problem is solved using the simplex method, it is found that in the optimal tableau, $x_{BV} = (x_2, x_1, s_3)^T$. Use the formulas to construct the optimal tableau of the LP. (8)

Hint:
$$\begin{pmatrix} 1 & 3 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/4 & -3/4 & 0 \\ 1/4 & 1/4 & 0 \\ -1/2 & 1/2 & 1 \end{pmatrix}$$
.

(b) Consider the following linear programming problem with its optimal tableau.

maximise
$$z = 3x_1 + 2x_2$$
 $z x_1 x_2 s_1 s_2 s_3$ rhs subject to: $2x_1 + x_2 \le 100$, $x_1 + x_2 \le 80$, $0 1 0 1 -1 0 20$ $x_1, x_2 \ge 0$.

Answer the following questions.

- (i) Find the range of values of c_1 (the objective function coefficient of x_1) for which the current BV remains optimal. (4)
- (ii) Find the range of values of b_2 (the right-hand side of the second constraint) for which the current BV remains optimal. (4)
- (iii) A third activity x_3 is being considered. If $c_3 = 3.5$ and $a_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, determine if it is worth introducing this activity. (4)

Some Formulas:
$$\bar{c}_j = c_{BV} B^{-1} a_j - c_j$$
, $\bar{b} = B^{-1} b$, $\bar{a}_j = B^{-1} a_j$, $\bar{z} = c_{BV} B^{-1} b$,

ACADEMIC YEAR: 2020/2021 PAGE 4

Question 6 [20 Marks]

Consider the optimal control problem with state equation and cost function

$$\dot{x}_1 = x_1 + u_1, \quad J = \int_0^{t_1} \frac{1}{2} u_1^2 dt.$$

The initial and terminal states are $x_1(0) = X$ and $x_1(t_1) = 0$, respectively.

Use the Pontryagin Maximum Principle to find the optimal control, the optimal trajectory, and the optimal cost.

Question 7 [20 Marks]

Consider the controllable problem with state equations

$$\dot{x}_1 = x_2 + u_1, \quad \dot{x}_2 = 0, \quad |u_1| \le 1.$$

- (a) Find $C(t_1,0)$, the set of all points controllable to the origin in time t_1 . (6)
- (b) Find C(0), the set of all points controllable to the origin. (2)
- (c) Find $\mathcal{R}(t_1, x^0)$, the set of reachable points from $x^0 = (p, q)^T$ in time t_1 .
- (d) Write down the state equations for the time-reversed problem and verify that $\mathcal{R}(t_1,0)$ for the time-reversed problem is the same as $\mathcal{C}(t_1,0)$ for the original problem. (6)

END OF EXAMINATION_____