University of Eswatini

Main Examination, 2020/2021

B.Sc IV

Title of Paper

: DYNAMICS II

Course Number

: MAT 455

Time Allowed

: Three (3) Hours

Instructions:

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Start each new major question (A1-A5, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.
- 6. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1. (a.) State Newton's first law of motion. (b.) What is the final velocity v of a body with an initial velocity u of $2m/s$ accelerating at a rate a of $4m/s^2$ in time t of $4s$.	[2 marks]
QUESTION A2. (a.) Define an Inertial frame. (b.) Design a 2-ideal and isolated system. Put a particle of mass m_1 on the first frame and derive the expression for its position, velocity and	[2 marks]
acceleration on the 2nd inertial frame if the velocity of the first frame is constant.	[6 marks]
QUESTION A3. (a.) State the law of conservation of linear momentum. (b.) Show that the angular momentum vector L of a particle subject to no torque N is conserved.	[2 marks]
	[6 marks]
QUESTION A4.	r. 1 3
(a.) Define the Langrangian L of a body of mass m along the Y axis. (b.) How did your definition in (A4a) above differs in case the	[4 marks]
motion is along the XYZ axes.	[4 marks]
QUESTION A5.	
(a.) Define the following terms:	[2 marks]
(i.) Generalized coordinates.(ii.) Degree of freedom.	[1 marks]
(iii.) Constraint.	[2 marks]
(b.) An arbitrary object placed on a 3 dimensional surface is described by the cartesian coordinates $(2,0,1)$ and $(3,1,1)$. Find the	
size of holonomic constraints on this object.	[3 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2

(a.) State Hamilton's variational principle.

[3 marks]

(b.) Show that the Langrange's equation of motion for a one dimensional oscillator without damping is

 $m\ddot{x} + kx = 0.$

[7 marks]

(c.) Find the equation of motion of a simple pendulum of mass m and length l on the XYZ plane onto the polar plane.

[10 marks]

QUESTION B3.

(a.) Define the Hamiltonian H.

[2 marks]

(b.) What is the difference between the Hamiltonian H and the Langrangian L of a body.

[3 marks]

(c.) A projectile of mass m moving with a velocity \dot{x} traveled a vertical distance x_2 . Show that the Hamiltonian H is given by:

$$H(p_i, x_i, t) = \frac{1}{2m} \sum_{i} p_i^2 + mgx_2.$$

[15 marks]

QUESTION B4.

(a.) What is a scleronomic constraint.

[3 marks]

(b.) Show that the Hamiltonian H of a body of mass m moving horizontally with a velocity v respective to a launch point, a height y and a distance d from the launch point as the generalized coordinates is given by:

$$H = p_d \left[\frac{p_d}{2m} - v \right] + \frac{p_y^2}{2m} + mgy.$$

[17marks]

QUESTION B5.

(a.) Consider an object of mass m falling near earth in

1D motion. What is its Langrangian

[17 marks]

(b.) A student throws 5 objects on a 3 -dimensional surface. Find the degrees of freedom associated with the throw. Draw the freedom space for

the motion of the objects.

[3 marks]

QUESTION B6.

(a.) What are cyclic coordinates.

[3 marks]

(b.) State and Prove the Hamiltonian equations of motion.

[17 marks]

END OF EXAMINATION