# University of Eswatini



## Main Examination, 2020/2021

## BSc IV, BASS IV

Title of Paper

: INTRODUCTION TO MATHEMATICS OF FINANCE

Course Number

: MAT442

Time Allowed

: Three (3) Hours

#### Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1 A3, B4 B8) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

# Special Requirements: Statistical Tables

This examination paper should not be opened until permission has been given by the invigilator.

## SECTION A [40 Marks]: ANSWER ALL QUESTIONS

- A1 (a) Outline any five operations of financial institutions that help sustain their businesses. [5 marks]
  - (b) Name any two risks that banks face in their operations and suggest possible ways to mitigate them. [4 marks]
- A2 (a) State the  $\sigma$  algebra theorem.

[5 marks]

- (b) Let  $\Omega$  denote the set of all outcomes when tossing an unbiased coin 3 times. Describe the probability space. [8 marks]
- (c) Company XYZ bonds pay interest semi annually and mature in 10 years. Currently, a E1000 bond sells for E800 and the bondholders require annual return of 9%. Calculate the coupon rate of these bonds. [8 marks]
- A3 (a) State the Ito's formula.

[2 marks]

(b) Using Ito's formula, express the following Ito integral in terms of a standard integral of Brownian motion,

$$\int_0^t B_s^2 dB_s$$

[8 marks]

### SECTION B [60 Marks]: ANSWER ANY THREE QUESTIONS

#### QUESTION B4 [20 Marks]

B4 (a) Define a put-call parity.

[4 marks]

(b) Using the Black Scholes model, determine the price of a European call option on a non-dividend paying stock, where the stock price is E630, the strike is E600, the time to expiry is 6 months, the risk-free rate is 10% and the volatility is 20%. [16 marks]

#### QUESTION B5 [20 Marks]

B5 (a) A stock price Y for a given asset in trade changes according to the stochastic differential equation

$$dY(t) = \frac{\pi}{4}Y(t)dB_t, Y(0) = \pi^2.$$

Find the stock price.

[10 marks]

(b) Use the Ito's formula to write  $X(t) = tB^2(t)$  in the form

$$dX(t) = u(t, \omega)dt + v(t, \omega)dB(t).$$

[10 marks]

## QUESTION B6 [20 Marks]

- B6 A stock price is currently E1500. Over each of the next three six-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 8% per annum.
  - (a) Construct a stock price tree.

[5 marks]

- (b) Using the tree, what is the value of the European call option with a strike price of E1500? [5 marks]
- (c) Calculate the risk neutral probabilities.

[10 marks]

#### QUESTION B7 [20 Marks]

B7 The Ornstern-Uhlenbeck process can be defined as the solution to the SDE,

$$dX_t = -\alpha X_t dt + \sigma dB_t,$$

$$X_0 = x_0$$
.

(a) Apply the Ito's formula to solve the SDE.

[17 marks]

(b) State the distribution of the process Xt.

[3 marks]

## QUESTION B8 [20 Marks]

B8 (a) State the Martingale representation theorem.

[5 marks]

(b) Consider a simple model with T=2 and K=4. Suppose r=0 and the risky security is as follows:

|            | t = 0      | i          | I :            |
|------------|------------|------------|----------------|
| $\omega_1$ | $S_0 = 10$ | $S_1 = 12$ | $S_2 = 14$     |
| $\omega_2$ | $S_0 = 10$ | $S_1 = 12$ | $  S_2 = 10  $ |
| $\omega_3$ | $S_0 = 10$ | $S_1 = 8$  | $S_2 = 10$     |
| $\omega_4$ | $S_0 = 10$ | $S_1 = 8$  | $S_2 = 6$      |

Calculate the discrete time martingale measure Q.

[15 marks]