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SECTION A [4{0 Marks]: ANSWER ALL QUESTIONS
QUESTION Al [40 Marks]
Al (a) i. Define a metric space. [5 marks}
ii. Let X = Q1,11 := {f: [-1,1] = R : f is continuous}.
Define dy : X x X —» [0,00) for all f,g € X by
hif,9) \/ [ ) - st
for all x € [~1,1]. Compute da(f,g) given that
A. flz) = 2? and g(z) = iz, [3 marks]
B. f(z) =sinwz and g(z) = 0. [4 marks]
(b) Let (X,d) be a metric space and A C X. Define the following terms:
i. an open ball in X. |2 marks]
ii. A is an open set in X. [2 marks]
iil. limit point of A in X. [2 marks]

iv. Let X = R be the set of real numbers. Consider a usual metric

d: X x X = {0,00) defined by d(z,y) = |z —y|, for all z,y € X.

Compute B1{—2}.
v. Let X = R be endowed with the usual metric. Let A = [0,1).
Show that A is not open in X.

(¢) Let (X, d) be a metric space.
i. When is (X, d) a complete metric space?

ii. Define a contraction mapping on (X, d).

iii. Let f:R® = R3 be defined by f(z,y,2) = (3, g 2) Show that f is a

contraction on R? with respect to the Euclidean metric space.

iv. State, without proof, the Banach Contraction Principle.

(3 marks]

[3 marks]

[2 marks]

[3 marks]

[4 marks]

[3 marks]

v. Fully explain, why the Banach Contraction Principle, fails to hold on the function

g:[0,1] = R defined by

g(z) = (2$ +6), forall z € [0,1].

[4 marks]
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Let X = (0, 00), prove that d : X x X — R defined by

11
d(w,y) = ‘; = 5! + 2% — 17|

is a metric on X. [6 marks]
(b) Let X = R set of real numbers. Is d* : X x X — [0, 00) defined by

d*(z,y) = |z* — v*| a metric on X7 Justify your claim. [2 marks|
(¢) Let (X,d) and (Y, p) be two metric spaces. Define an isometric map f

from X into Y. [3 marks]
(d) Prove that the Inverse of a surjective isometry mapping is an isometry mapping. [5

marks|

(¢) Consider the usual metric space (R, d) and the Euclidean space (3, d3).
Prove that the inclusion map ¢ : R — R® defined by

g(z) = (0,z,0), for all z € R

is an isometry. [4 marks}

QUESTION B3 (20 Marks]

B3 (a) Let (Y,d) be a complete metric space and B CY. Assuming that
B is complete, prove that B is closed. [6 marks]

(b) Let X =R with metric py defined by

1, 21
po(:t?,y): { 0’ ,E?:é;

for arbitrary z,y € R. Find the following open balls:
(1) Bs(4); (i) By (5); (iii) So(3). 13,3,3 marks]

(¢) Prove that an arbitrary union of open sets in X is open in X. [6 marks]

QUESTION B4 [20 Marks]

B4 (a) Let (X, px) and (Y, pyj be any two metric spaces. Define a continuous

mapping f: (X, px) = Y, pv). [5 marks|
(b) Let f:R? —» R be defined by
A for 2% + y* # 0
= g 2y
f(z:y) { 0, forx=y=20
Prove that f is continuous at (0,0). [8 marks]

(¢) Prove that image of a compact set under a continuous map is compact. [7 marks)
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QUESTION B5 [20 Marks)

B5 (a) Let {X,d) be a metric space and for any z,y,w,z € X.
Prove that
d(z,y) — d(w, z)| < d(w,z) + d(z,¥).
[5 marks}

(b) Let X be a nonempty set and suppose that (X, d) and (X, p) are metric

spaces. Under what condition is d and p said to be an equivalent metric spaces? (3
marks]
(c) In IR*, prove that the metrics da(,¥) = />, [%: =~ vil* and
doo(,y) = max |z; — yi|, where @ := (21,22, , Zn),
1<i<n
y o= (Y1, Y2, 0, Ya) € R are equivalent. [8 marks]

(d) Let K be a subset of a metric space X. Under what condition is K compact?[4 marks]

QUESTION B6 {20 Marks]

B6 (a) Let X =R be endowed with discrete metric defined d : R x R — {0, 00) by

sen)={ o 3§ 22

for all z,y € X. Let A=[1,2)U(3,5]. Compute

i. Limit of A4,

ii. A,

iii. int(A),

iv. JA.

(3,3,3,3 marks]
(b) By using Euclidean metric, find the limit of the sequence

( 1 n )
Tpi=|—,—— }.
n?’ n+1
[4 marks]

(¢) Define a homeomorphism. [4 marks]

END OF EXAMINATION




