University of Eswatini

MAIN EXAMINATION, 2020/2021

B.Sc IV, BASS IV

Title of Paper

: Abstract Algebra II

Course Number

: M423/MAT423

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1–A2, B3 B7) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

A1 (a) Let $\mathbb Z$ denote set of integers. Define the operation addition " \oplus " and multiplication " \odot " on \mathbb{Z} as follows. For any $a, b \in \mathbb{Z}$,

$$a \oplus b = a + b - 1$$
 and $a \odot b = a + b - ab$.

Given that (\mathbb{Z}, \oplus) is an abelian group and " \odot " is associative on \mathbb{Z} .

[12 marks]

Prove that $(\mathbb{Z}, \oplus, \odot)$ is a commutative ring with identity. (b) Compute the evaluation homomorphism $\varphi_3[(x^4+2x)(x^3-3x^2+3)]$ in \mathbb{Z}_6 . [4 marks]

(c) By Fermate's Little Theorem, calculate the remainder of 2^{203} when divided by 13.

[4 marks]

QUESTION A2 [20 Marks]

A2 (a) Let R be a ring. Define the following terms in R

i. an integral domain	[3 marks]
ii. a division ring	[3 marks]
_	[3 marks]
iii. a field.	-

(b) Give example of

[2 marks] i. an integral domain that is not a field. [2 marks] ii. a division ring that is not a field.

(c) Prove that every finite integral domain is a field.

[7 marks]

SECTION B [60 Marks]: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- B3 (a) Let \mathbb{Z} be set of integers and \mathbb{R} set of real numbers, if $\mathbb{Z}(\sqrt{2}) := \{a + \sqrt{2}b : a, b \in \mathbb{Z}\} \subset \mathbb{R}$. Prove that $\mathbb{Z}(\sqrt{2})$ is a subring of \mathbb{R} . [7 marks]
 - (b) Let R be an integral domain. Prove that a group of units U(R)[x] in the polynomial ring R[x] is just the set of units U(R) in R. [7 marks]
 - (c) Show that $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ is a nilpotent element in $M_3(\mathbb{R})$. [6 marks]

QUESTION B4 [20 Marks]

- B4 (a) Define a unit in a ring R. And prove that a unit cannot be a zero divisor. [8 marks]
 - (b) Let $S = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ be a subset of $M_2(\mathbb{Z})$. Prove that S is an additive subgroup of $M_2(\mathbb{Z})$ and also S is a right-ideal but not a left ideal. [12 marks]

QUESTION B5 [20 Marks]

- B5 (a) Find all the solutions of $x^2 + 2x + 4 = 0$ in \mathbb{Z}_6 . [5 marks]
 - (b) Let \mathbb{Z}_6 be a ring and $I = \{0, 3\}$ be ideal of \mathbb{Z}_6 . List the elements of \mathbb{Z}/I and compute the addition and multiplication tables of \mathbb{Z}_6/I . [8 marks]
 - (c) By Fermate's Little Theorem, evaluate

$$2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \mod 7$$

[7 marks]

QUESTION B6 [20 Marks]

B6 (a) Let R be a ring and U(R) a unit ring. Prove that

$$\sigma_u: R \to R, \quad \sigma_u(r) = uru^{-1}, \quad r \in R,$$

is an automorphism of R called an inner automorphism.

[7 marks]

(b) Find the quotient q(x) and the remainder r(x) when the polynomial $f(x) = 3x^3$ is divided by $ix^2 + 5x + 2$ in $\mathbb{C}[x]$.

[8 marks]

(c) Use Eisentein's criterion to show that $f(x) = 3x^4 - 10x^2 - 5x + 15$ is irreducible over \mathbb{Q} .

[5 marks]

QUESTION B7 [20 Marks]

- B7 (a) Prove that any prime element of an integral domain is irreducible. [6 marks]
 - (b) Define Unique Factorisation Domain (UFD).

[5 marks]

(c) Find $d = \gcd(a, b)$ and x, y such that d = ax + by if a = 32 + 9i and b = 4 + 11i in $\mathbb{Z}[i]$.

[9 marks]