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SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1l [20 Marks]

Al (a} Let Z denote set of integers. Define the operation addition "@” and
multiplication "®” on Z as follows. For any a,beZ,

aplb=a+b-1 and a®b=a+b-—ab.

Given that (Z,®) is an abelian group and ” @©” is associative on Z.
Prove that (%,®,®) is a commutative ring with identity. [12 marks}
(b) Compute the evaluation homomorphism osl(zt + 22)(z® — 32 +3)] inZg. [4 marks]

(c) By Fermate’s Little Theorem, calculate the remainder of 2203 when
divided by 13. (4 marks]

QUESTION A2 [20 Marks]

A2 (a) Let R be a ring. Define the following terms in R

i. an integral domain [3 marks]
i, a division ring [3 marks]
i1, a field. [3 marks}
(b) Give example of
i. an integral domain that is not a field. [2 marks]
ii. a division ring that is not a field. [2 marks]

(¢} Prove that every finite integral domain is a field. [7 marks]
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SECTION B [60 Marks]: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks)

B3 (a) Let Z be set of integers and R set of real numbers, if
Z{V2) := {a + v/2b: a,b € Z} C R. Prove that Z{v/2} is a subring of R.
(b) Let It be an integral domain. Prove that a group of units U(R)[z]
in the polynomial ring Rz} is just the set of units U(R) in R.
010
(c) Show that | 0 0 1] is a nilpotent element in M3(R).
0 00

QUESTION B4 [20 Marks)

B4 (a) Define & unit in a ring R. And prove that a unit cannot be a zero divisor.

) Lets={ (2 1)

an additive subgroup of My(Z) and also S is a right-ideal but not a
left ideal.

a,be Z} be a subset of M3(Z). Prove that S is

QUESTION B5 [20 Marks)

B5 (a) Find all the solutions of 22 + 2z + 4 = 0 in Zs.
(b} Let Zg be a ring and I = {0, 3} be ideal of Zs. List the elements of Z/1
and compute the addition and multiplication tables of Zg/I.

(¢) By Fermate’s Little Theorem, evaluate
220 3% 1 4% 1 5%0 4+ 650 mod 7.

QUESTION B6 [20 Marks]

B6 (a) Let R be a ring and U(H) a unit ring. Prove that
gu: R R, ou(r)=wuwru!, rchR,
is an automorphism of R called an inner automorphism.
(b) Find the quotient g(x) and the remainder r{z) when the polynomial
f(z) = 3z* is divided by i2* + 52 + 2 in Clz].
(¢) Use Eisentein’s criterion to show that f(z) = 32* — 102* — 5z 4 15
is irreducible over @.

QUESTION B7 [20 Marks]

B7 (a) Prove that any prime element of an integral domain is irreducible.
(b) Define Unique Factorisation Domain (UFD).
(¢) Find d = ged(a,b) and z,y such that d = ax + by if
a =32+ 9 and b =4 + 117 in Z[z].

END OF EXAMINATION
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