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(/' SECTION A [40 Marks]: ANSWER ALL QUESTIONS
QUESTION Al [20 Marks]
(@) Give the precise definition a convex function from a convex set S < R” to R. 2)

(b) Show that for ¢ =0, if f is a convex function on a convex set S, the function ¢ f

is concave on S.

(3}

(c) For each function below, determine whether it is convex, concave, or neither

on K2,

() flx1,x) = x5 +3x2 + X2
(i) f(x1, x0) = ~xF — xy00 — X2

(iil) [y, 2) = X7+ x5 — 2x1 +4x, +5,

QUESTION A2 [20 Marks]

(a) Consider the following linear programming problem.

maximise z = 3x; + x
subject to X1+ X =
2x1 + x =
X1 + X2 =
X,X =

(5)
(8)
5

S ol W

Write down the dual of the problem without first converting it to normal form

{use the rules).

(b) Consider the following linear programming problem.

minimise z = 2x; + 3x
subject to: 2xX; + X
-X; + X

Xy, X2

(i) Use the graphical method to solve the problem.
(ii) Use the Big-M method to solve the problem.

VOIAN WV

(6)

S b

(6)
(8)

END OF SECTION A — TURN OVER
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

Consider the following l[inear programming problem.

max z = 4x; + Xy + 2x3
s.1. 8x; + 3x + x3 = 2
6x;, + X + x3 = 8
Xy, Xg, %3 = 0
(a) Find the dual of the problem. (5)
(b) Use the graphical method to solve the dual of the LP (7)
(c) Use complementary slackness to solve the primal problem. (8)

QUESTION B4 [20 Marks]

(a} Find all local extrema and saddle points of the function

f(x1, %) = x5 = 3x,%5 + x5,

(10}
(b) Use Golden Section Search to determine, within an interval of length 0.2, the
optimal solution to
maximise f(x) =2 (x~1)?
subject to: 0.75 < x < 1.25.
(10)

QUESTION B5 [20 Marks]

Use the Kuhn-Tucker conditions to find the optimal solution to the following prob-
lem.

maximise z = x;(30—x))+ x(50—2x,) —3x) — 5x2 — 10x3
subject to: X1+ X—x3=<0
X3 < 18.

TURN OVER
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QUESTION B6 [20 Marks]

(a) Tt costs E20 to purchase 1 hour oflabour and E10 to purchase a unit of capital.
If Lhours of labour and K units of capital are available, then L2/3 kY3 machines
can be produced. If E100 is available to purchase labour and capital, what is
the maximum number of machines that can be produced? (10)

(b) Find the optimal solution to the following problem.

max z = xi + 2x2
2 —
s.t. x5+ x5 o= 1
(10)
QUESTION B7 [20 Marks]
(a) Use the method of steepest ascent to approximate the solution to
maximise  f(x1, %) = —(x —2)%-x; — %2
subject to: (x1, x2) € R,
Start at the point (£, 2). 10
(b) Perform oneiteration of the feasible directions method on the following prob-
lem.
maximise f(xy, xy) =3x, % — xf — xf.
subjectto: 3x;+x; <4
X1, % =0
Begin at the point (1,0). (10)

END OF EXAMINATION PAPER




