University of Eswatini

Main Examination, 2020/2021

BASS, B.Ed, B.Sc

Title of Paper

: Numerical Analysis II

Course Code

: MAT411/M411

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

- a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
- b. SECTION B: 60 MARKSAnswer ANY THREE questions.Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A: Answer ALL Questions

- a. Show that $f(t,y)=ty^2$ satisfies a Lipschitz condition on the set $D = \{(t,y) : 1 \le t \le 2 \text{ and } 1 \le y \le 3\}.$ [4]
 - **b.** Suppose the perturbation $\delta(t)$ is proportional to t, that is $\delta(t) = \delta t$ for some constant δ . Show directly that the following initial-value problem is well-posed; y'(t) = y(t) + 1, $0 \le t \le 1$, [6] y(0) = 0.
 - c. Derive the normal equations based on minimizing the least squares error $E(a_0, a_1, \dots, a_n) = \int_a^b [f(x) - P_n(x)]^2 dx$ where $P_n(x) = \sum_{k=0}^n a_k x^k$. [6]
 - d. Derive the recurrence formula

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x)$,

where T_n are Chebyshev polynomials of order n defined by $T_n(x) = \cos(n\arccos(x))$, for each $n \ge 0$ with $x \in [-1, 1]$. [5]

e. Derive the explicit finite difference scheme for the heat equation,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.$$
 [4]

f. Apply the Runge-Kutta method of fourth order in steps of
$$0.2$$
, to solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2.$$
 [6]

g. For the initial value problem,

$$x' = -x + t + 1, \ 0 \le t \le 3, \ x(0) = 1,$$

approximate x(0.1) by using one step of

- [3] i. Euler method,
- [3] ii. Modified Euler method,
- iii. Taylor series method of order 2. [3]

Section B: Answer ANY 3 Questions

- **B2.** (a) Use the Gram-Schmidt process to calculate L_1, L_2 , where $\{L_0(x), L_1(x), L_2(x)\}$ is an orthogonal set of polynomials on $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$ and $L_0(x) = 1$. The polynomials obtained from this procedure are called the Laguerre polynomials. [10]
 - (b) Use the Laguerre polynomials calculated above in (a) to compute the least squares polynomial of degree two on the interval $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$ for $f(x) = x^2$. [10]
- **B3.** (a) Solve by Taylor series method of third order the equation $y'(x)=(x^3+xy^2)e^{-x}, \quad y(0)=1$ for y at $x=0.1, \ x=0.2$ and x=0.3. [10]
 - (b) Use the Newton backward difference interpolating formula to derive 2-step Adam-Bashforth explicit formula. [10]

$$y_{i+1} = y_i + \frac{h}{2}[3f_i - f_{i-1}]$$

B4. Consider the following multi-step method for approximating the solution to an initial value problem,

$$y_{i+1} = 2y_i - y_{i-1} + \frac{h}{4}[f_{i-2} + 3f_{i-1}],$$

 $y_0 = a, y_1 = a_1, y_2 = a_2.$

Discuss the stability, consistency and convergence of this method. [20]

B5. Consider the finite difference scheme;

$$U_j^{n+1} = U_j^n + \frac{k}{h^2} \left(U_{j-1}^n - 2U_j^n + U_{j+1}^n \right) - kU_j^n,$$

for the numerical approximation of

$$u_t(x,t) = u_{xx}(x,t) - u(x,t), \quad 0 < x < 1, \ t > 0,$$

 $u(0,t) = u(1,t) = 0, \quad t > 0,$
 $u(x,0) = f(x), \quad 0 \le x \le 1.$

The constants k and h denote step sizes in the t and x variables, respectively.

- (a) Find the local truncation error for this finite difference scheme. [10]
- (b) Perform a Von-Neumann stability analysis for this scheme. [10]
- B6. Consider the differential problem;

$$u_t(x,t) = u_{xx}(x,t), \quad 0 < x < 1, \quad t > 0$$

 $u_x(0,t) = 1, \ u_x(1,t) = 0, \quad t > 0,$
 $u(x,0) = x(1-x), \quad 0 \le x \le 1.$

(a) Deduce the fully implicit numerical scheme resulting from using a backward difference approximation for the derivative u_t , and a central difference approximation for both u_x and u_{xx} . Show that the resulting finite difference equations may be written in matrix form as

$$\mathsf{A}\mathsf{U}^{(n)}+\mathsf{v}=\mathsf{U}^{(n-1)}$$

[12]

(b) Use this numerical scheme with $\Delta t = 0.1$ and $\Delta x = 0.5$ to derive the matrix equation to be solved to approximate u(0.5,0.1). Do not solve the equation. [8]

END OF EXAMINATION