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QUESTION 1 [20 Marks]
1 (a) Define what is meant by saying that the functions [, converge uniformly
and pointwisely to f on the interval [a,b] as n — +-co. [5 marks]

(b} State Uniformly Cauchy Criterion Theorem.
(c) Let {f,}%, be a sequence of continuous functions on a set D,

TL==

if f, — f uniformly on £. Prove that [ is continuous on D.

(d) Show that f,(z) = > converge on R uniformly.

QUESTION 2 [20 Marks]

2 (a) Suppose X is a vector space over the ficld . Write down the conditions
for X to be a normed vector space together with the real valued
function {[.|] : X — [0, 00).

(b) Prove that the classical space £,(1 < p < 00) is complete.

(¢c) A measure space (X, 2, u) is complete if?

QUESTION 3 {20 Marks]

3 (a) Let £, : [a,b] = R be a sequence of continuous function. Suppose that
{fa} converges uniformly to some f [a, b} ~» R on [a,b]. Prove that

b b b
lim / fo(z)de = / 135220 fulz)dz = | flz)d=

=00

(b) Let fo:[0,1] — R, where n € R, be defined by

_ n+(sin(e”)"

fal) = = =57 « €0 1]

Find lim [ fu(2)de.
o
(c) By Weicrstrass M-Test, prove that the series
=, 1+ nsin(nz)
Z pd—cos(nr)

n==l

is uniformly convergent on [0, 27].

QUESTION 4 [20 Marks]

inner product on X by {(f,9) = [01 T g(t)dt, where [(t) is the
conjugate of f(t). Compute (.,.), when f(t) = g(t) = 1 +1t.
(b) Let X be inner product space. Suppose z,y € X such that

ol = V17, [[z-+ 9l =4 and [lo =yl =6

4 (a) Let X = C[0,1]. Define (,.) : X x X = C for each f,g € X the

Find {[y]}

[6 marks]

[6 marks]
[6 marks]

[5 marks]
[12 marks]

[3 marks]

[8 marks]

[6 marks]

[6 marks]

[5 marks]

{5 marks]
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(c) Let X =R® for any z,y € R define the inner product and norm on R? by

(z,y) = Ty and ||z}]s =

respectively. Given a set of three linearly independent vectors in R3

1 1 2
2= 1 0}; 2 = 10]; @ = |1
1 0 0

Using Gram Schmidt. procedure, generate an orthonormal set.

QUESTION 5 {20 Marks]

5 (a) Let F be a family of functions from a metric space (X, d} to a metric
space (Y, d). Define what is meant by saying that the functions F 1s
equicontinuous and uniformly equicontinuous on X.

(b} Prove that every equicontinuous family of functions from a compach
metric space to a metric space is uniformly equicontinuous.

(¢) Let JF be the subset of C[0,1] that consists of functions J of the form

f{z) = Za..n sin(nmx) with ink&nl <1.
n=1

n=1

The series defining f converges uniformly. By Arzela-Ascoli, prove that

F is a compact subset of C[0, 1].

QUESTION 6 [20 Marks]

6 (a) Let (X,d) be a metric space and f: X — X a mapping on X.
i Define what it means for f to be a contraction.
ii. Bvery continuous map is a contraction map. Yes or No?
iii. State the Contraction Mapping Principle.
(1) Consider the nonlinear, scalar ODE given by

w(t) = va(t)? +ult)?,

u{0) = o,

where @ : R — R is a continuous function. Prove that ODE have a solution.

QUESTION 7 [20 Marks]

7 (a) Let {$,}32; be an orthonormal sequence in an infinite dimensional
Hilbert space.
i. State Bessel’s inequality.
ii. What happen to Bessel’s inequality when {dn}%, is a complete
orthonormal sequence?

(b) Let(X, X, ) be a measure space and [ a nonnegative measurable function.

Define a Lebesgue integral of f with respect to p denoted by f, fdu.

[10 marks]

[4 marks]

[8 marks]

[8 marks]|

[4 marks]
[2 marks]
[6 marks]

[8 marks

[4 marks]
[3 marks]

[4 marks]
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(c) Let 1 < p,q < oo be conjugate exponents, (X, I, i) a measure,
if f € LP(X, 1), g € LI(X, p) with p € (1, +o0) and J + 1 = 1.
Prove that
fo X, and | |fgldu < [171bligll
[9 marks]

END OF EXAMINATION




