University of Eswatini

Main Examination 1, 2019/2020

M.Sc. Mathematics 1

Title of Paper

: STOCHASTIC DIFFERENTIAL EQUATIONS

Course Number : MAT 632

Time Allowed

: Three (3) Hours

Instructions:

1. This paper consists of SIX (6) questions in TWO sections.

- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Start each new major question (A1-A5, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.
- 6. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1.

(a.) Define a stochastic process.

[2 marks]

(b.) Evaluate the stochastic integral $I = \int_0^t s^2 B^3 dB(s)$.

[6 marks]

QUESTION A2.

(a.) Define a σ -algebra over a non empty set Ω .

[3 marks]

(b.) Suppose $G_1, G_2, G_3, ..., G_n$ are disjoint subsets of Ω

such that $\Omega = \bigcup_{i=1}^n G_i$. Prove that a family G consisting of \emptyset and all unions of $G_1, G_2, G_3, ..., G_n$ constitute a σ - algebra on Ω .

[5 marks]

QUESTION A3.

(a.) Define a Brownian Motion.

[2 marks]

(b.) Evaluate:

i. $E[B^4]$

[3 marks]

ii. $E[B^{24}]$

[3 marks].

QUESTION A4.

Use Ito's formula to write X(t) in the form

$$dX(t) = u(t, \omega)dt + v(t, \omega)dB(t)$$

(i.)
$$X(t) = t^7 B^2(t)$$
.

[4 marks]

(ii.)
$$X(t) = t^3 + e^{B(t)}$$
.

[4 marks]

QUESTION A5.

Given a Brownian motion $\{B_t\}_{t\geq 0}$. Show that the increments of $\{B_t\}_{t\geq 0}$ are independent.

[8 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2

a.) State the Martingale representation theorem.

[4 marks]

(b.) Prove that if

$$dZ(t) = Z(t)\theta(t,\omega)dB(t)$$

then Z(t) is a martingale for all $t \leq T$ provided that $Z(t)\theta_k(t,\omega) \in \nu(0,T) \quad 1 \leq k \leq n$.

[16 marks]

QUESTION B3

a.) Define an elementary function.

2 marks

b.) List three (3) real valued functions that are elementary functions.

[5 marks]

c.) State and prove the Ito isometry for elementary and bounded function $\phi(t,\omega)$.

[13 marks]

QUESTION B4.

(a.) Define a Wiener process.

[4 marks]

(b.) Given a stochastic process $\{X(t)\}_{t\geq 0}$ whose changes is described by

$$\frac{dX(t)}{dt} = a(t, X(t)) + b(t, X(t))."noise."$$

where a(.) and b(.) are functions. Given that $W(t) \sim B(t)$, Construct a discrete time solution for X(t) in the interval [0, t].

[16 marks]

QUESTION B5.

(a.) Solve the stochastic differential equation for $\alpha \in \Re$

$$dX(t) = \alpha X(t)dt + \rho X(t)dB(t); \ \rho, \alpha \in \Re.$$

[10marks]

(b.) Evaluate:

(i.) E[X].

[5 marks]

(ii.) $\sigma^2(X)$.

[5 marks]

QUESTION B6.

(a.) Solve the Ornstein-Uhlenbeck equation

$$dX(t) = \alpha X(t)dt + \rho dB(t); B(0) = 0, \rho \in (0, 1), \alpha \in \Re.$$

[10 marks]

(b.) Evaluate:

(i.) E[X].

[5 marks]

(ii.) $\sigma^2(X)$.

[5 marks]

END OF EXAMINATION