University of Eswatini ## DECEMBER 2019 MAIN EXAMINATION ### MSc in Mathematics Title of Paper : Spectral Methods for Differential Equations Course Number : MAT607 Time Allowed : Three (3) Hours ### Instructions 1. This paper consists of SIX (6) questions. - 2. Answer ANY FOUR (4) questions. - 3. Show all your working. - 4. Start each new major question on a new page and clearly indicate the question number at the top of the page. - 5. You can answer questions in any order. Special Requirements: NONE THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR. ### QUESTION 1 [25 Marks] The solution of the differential equation $$y''(x) - 3y'(x) + 2y(x) - x = 0$$ with boundary conditions $$y(0) = 1$$, and $y(1) = 0$ can be approximated by the polynomial $$Y(x) = c_0 + c_0 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$ Use spectral collocation points with equally spaced collocation points to show that matrix equation that results from the collocation process is [25 Marks] $$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & -\frac{5}{2} & \frac{5}{8} & \frac{31}{32} & \frac{73}{128} \\ 2 & -2 & -\frac{1}{2} & 1 & \frac{13}{8} \\ 2 & -\frac{3}{2} & -\frac{11}{8} & \frac{9}{32} & \frac{297}{128} \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{4} \\ \frac{1}{2} \\ \frac{3}{4} \\ 0 \end{bmatrix}$$ ## QUESTION 2 [25 Marks] Consider the Blassius boundary layer flow equation $$f'''(x) + f(x)f''(x) = 0$$ whose boundary conditions are $$f(0) = 0$$, $f'(0) = 0$, $f'(\infty) = 1$ - (a) Derive the quasi-linearisation method scheme that can be used to iteratively [10 Marks] solve the Blassius equation - (b) Illustrate how the matrix approach of the spectral collocation can be applied on the quasi-linearisation method and boundary conditions with the transformations $$f^{(n)}(x_i) = \sum_{k=0}^{N} \mathbf{D}_{i,k}^{(n)} f(z_k) = \mathbf{DF}, \ \ i = 0, 1, 2 \dots, N$$ where $\mathbf D$ is the differentiation matrix and $\mathbf F$ is the vector of unknowns at the so-called collocation points $z_i = \cos\left(\frac{\pi i}{N}\right)$. [15 Marks] ### QUESTION 3 [25 Marks] Consider the following linear partial differential equation with boundary conditions and initial conditions $$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} - 2x \frac{\partial y}{\partial x} - y$$ $$y(-1,t) = e^t$$, $y(1,t) = e^t$, and $y(x,0) = e^{x^2-1}$ with exact solution $y(x,t) = e^{t+x^2-1}$. Is approximating the solution of the differential equation, consider three equally spaced nodes x_0, x_1, x_2 in the space variable x and two nodes t_0, t_1 in the time variable t and the approximating function. $$Y(x,t) = c_{0,0} + c_{1,0}x + c_{2,0}x^2 + c_{0,1}t + c_{1,1}tx + c_{2,1}tx^2.$$ Show that the collocation process leads to the matrix equation $$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & \frac{1}{10} & -\frac{1}{10} & \frac{1}{10} \\ 1 & 0 & -2 & \frac{1}{10} & 0 & -\frac{1}{5} \\ 1 & 1 & 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \end{bmatrix} \begin{bmatrix} c_{0,0} \\ c_{1,0} \\ c_{2,0} \\ c_{0,1} \\ c_{0,1} \\ c_{1,1} \\ c_{2,1} \end{bmatrix} = \begin{bmatrix} 1 \\ e^{-1} \\ 1 \\ e^{1/10} \\ 0 \\ e^{1/10} \end{bmatrix}$$ #### QUESTION 4 [25 Marks] Consider the linear system of ordinary differential equations $$\frac{d^2u}{dx^2} - u - \frac{dw}{dx} = 0$$ $$\frac{d^2w}{dx^2} + \frac{dw}{dx} + \frac{du}{dx} + w = 0$$ subject to the following boundary conditions $$u(a) = 0, \ w'(a) = 1$$ $$u'(b) = -1$$ $w(b) = -1$ Use the matrix based spectral collocation method with to illustrate how the linear system can be reduced to a matrix system of the form $$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} U \\ W \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$ In your illustration, give definitions of the matrices and vectors and demonstrate how the boundary conditions can be imposed on the matrices and vectors. [25 Marks] #### QUESTION 5 [25 Marks] Consider the linear ordinary differential equation $$(1+x^2)\frac{d^2u}{dx^2} + 4x\frac{du}{dx} + 2u = 0$$ with boundary conditions $$u(-1) = \frac{1}{2}, \quad u(1) = \frac{1}{2}.$$ and exact solution $u(x) = \frac{1}{1+x^2}$ Give a sketch of the Matlab code that can be used to solve the differential equation using a function, say cheb.m for invoking the collocation points x and differentiation matrix D. Your code sketch must include a line for plot the exact vs approximate solution and residual error profile. [25 Marks] ### QUESTION 6 [25 Marks] Consider the regular eigenvalue problem $$y''(x) + \lambda y(x) = 0, \qquad x \in (0, 1)$$ subject to the boundary conditions $$y'(0) = 0, \quad y(1) = 0$$ Describe how the spectral quasi-linearisation method can be used to solve the eigenvalue problem [25 Marks] End of Examination Paper