University of Eswatini

Final Examination, August 2020

B.Sc IV, BASS IV, BEd IV

Title of Paper

: Fluid Mechanics

Course Code

: MAT456/M455

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

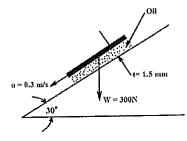
b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.


SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) Define the following terms:
 - (i) Natural flow, viscocity, Non-Newtonian fluid, incompressible flow. [8]
 - (ii) Describe the Eulerian and Lagrangian methods of describing fluid motion. [4]
 - (iii) Show that in a two dimensional incompressible steady flow field the equation of continuity is satsisfied with the velocity components in rectangular coordinates given by

dinates given by $u = \frac{k(x^2 - y^2)}{(x^2 + y^2)^2}, \quad v = \frac{2xy}{(x^2 + y^2)^2} \text{ where } k \text{ is arbitrary constant.}$ [4]

- (b) (i) Give the physical significance implied in the equation of continuity in fluid motion. [4]
 - (ii) For a certain two-dimensional flow field the velocity is given by the equation $(x^2 y^2)\mathbf{i} 2xy\mathbf{j}$. Is the flow irrotational? [4]
 - (iii) Show that $\phi = (x t)(y t)$ represents the velocity potential of an incompressible two dimensional fluid. [5]
 - (iv) The velocity components in a three-dimensional flow field for an incompressible fluid are (2x, -y, -z). Is it a possible field? Determine the equations of the stream line passing through the point (1,1,1). [5]
 - (v) Calculate the dynamic viscosity of an oil which is used for lubrication between a square plate of size $0.8m \times 0.8m$ and an inclined plane with an angle of inclination 30^0 as shown in the figure. The weight of a square plate is 300N and it slides down in the inclined plane with a uniform velocity of 0.3m/s. Thickness of the oil film is 1.5mm.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Derive Bernoulli's equation for nonviscous, incompressible, steady flow and the forces acting are due to pressure and gravity. [10]
- (b) The wind in a hurricane reaches 200 km/h. Estimate the force of the wind on a window facing the wind in a high-rise building if the window measures $1m \times 2m$. Use the density of the air to be $1.2kg/m^3$. [10]

Question 3

- (a) A velocity field in a plane flow is given by $V = 2yt\mathbf{i} + x\mathbf{j}$. Find the angular velocity and the vorticity vector at the point (4m, 2m) at t = 3s. [10]
- (b) A jet of water 8 cm in diameter impinges on a plate normal to its axis. For a velocity of 4 m/s, what force will keep the plate in equilibrium? [10]

Question 4

- (a) Determine the acceleration of a fluid particle from the following flow field: $\mathbf{q} = \mathbf{i}(Axy^2t) + \mathbf{j}(Bx^2yt) + \mathbf{k}(Cxyz). \tag{10}$
- (b) Consider the velocity field given by $q = (1+At)\mathbf{i} + x\mathbf{j}$. Find the equation equation of the streamline at $t = t_0$ passing through the point (x_0, y_0) . Also obtain the equation of the pathline of a fluid element which comes to (x_0, y_0) at $t = t_0$. Show that, if A = 0 (i.e. steady flow), the streamline and pathlines coincide. [10]

Question 5

- (a) (i) What is(are) the advantage(s) of dimensional analysis. [3]
 - (ii) State the principle of dimensional homogeneity [3]
- (b) A pipe A 450mm in diameter branches into two pipes B and C of diameters 300mm and 200mm respectively. If the average velocity in 450mm diameter pipe is 3m/s, find
 - (i) Discharge through 450mm diameter pipe. [7]
 - (ii) Velocity in 200mm diameter pipe if the average velocity in 300mm pipe is 2.5m/s. [7]

Question 6

- (a) From the law of conservation of mass, show that whether the flow field represented by $u = -3x + y^2 \frac{1}{x}$ and $v = x^2 + 3xy + y \ln x$ is a possible velocity field for two dimensional incompressible flow. [6]
- (b) Show that for an incompressible steady flow with constant viscosity, the velocity components

 $u(y) = y\frac{U}{h} + \frac{h^2}{2\mu} \left(-\frac{dp}{dx} \right) \frac{y}{h} \left(1 - \frac{y}{h} \right)$ v = w = 0

satisfy the equation of motion, when the body force is neglected. h, U, dp/dx are constants and p = p(x).

Hint: Apply Navier-Stokes equation.

[14]

End of Examination Paper