## University of Eswatini

## Main Examination, 2019/2020

### B.Sc IV and BASS IV

Title of Paper

: Metric Space

Course Code

: MAT434/M431

Time Allowed

: Three (3) Hours

#### Instructions

- 1. This paper consists of TWO sections.
  - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
  - b. SECTION B: 60 MARKS
     Answer ANY THREE questions.
     Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

# SECTION A: ANSWER ALL QUESTIONS

| 11. | (a) Define a metric space.                                                                                                                                                                                                                                           | [4] |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (b) Let $X = C[-1, 1] := \{f : [-1, 1] \to \mathbb{R}   f \text{ is continuous}\}.$<br>Define $\rho : X \times X \to \mathbb{R}^+ \ \forall \ f, g \in X \text{ by}$                                                                                                 |     |
|     | $\rho(f,g)=\int_{-1}^1 f(t)-g(t) dt.$                                                                                                                                                                                                                                |     |
|     | Compute i. $f(t) = 5t$ and $g(t) = 0 \ \forall t \in [-1, 1]$ .                                                                                                                                                                                                      | [3] |
|     | ii. $f(t) = t$ and $g(t) = 2 - t \ \forall t \in [-1, 1].$                                                                                                                                                                                                           | [3] |
|     | (c) Consider $X = \mathbb{R}^2$ . Define $d_1: X \times X \to [0, \infty)$ by $d_1(\bar{x}, \bar{y}) = \sum_{i=1}^2  x_i - y_i  \text{ and } d_{\infty}(\bar{x}, \bar{y}) = \max\{ x_1 - y_1 ,  x_2 - y_2 \}.$ If $\bar{x} = (-3, 4)$ and $\bar{y} = (20, 2)$ . Find |     |
|     | i. $d_1(ar{x},ar{y})$                                                                                                                                                                                                                                                | [3] |
|     | ii. $d_\infty(ar x,ar y)$ .                                                                                                                                                                                                                                          | [3] |
|     | (d) Let $(X, d)$ be a metric space and $A \subset X$ .                                                                                                                                                                                                               |     |
|     | i. Define the limit point of $A$ in $X$ .                                                                                                                                                                                                                            | [3] |
|     | ii. Define the closure of $A$ .                                                                                                                                                                                                                                      | [3] |
|     | (e) Consider the mapping $\rho: X \times X \to \mathbb{R}^+$ defined by $\rho(x,y) =  x-y $ . Compute                                                                                                                                                                |     |
|     | i. $B_1(-1)$                                                                                                                                                                                                                                                         | [3] |
|     | ii. $ar{B_{rac{3}{2}}}(1)$                                                                                                                                                                                                                                          | [3] |
|     | iii. $S_3(0)$ .                                                                                                                                                                                                                                                      | [3] |
|     | (f) Prove that $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x,y) = (\frac{y}{2}, \frac{x}{2})$ is a contraction on $\mathbb{R}^2$ (with respect to the Euclidean metric).                                                                                        | [5] |
|     | (g) Define a Homeomorphism.                                                                                                                                                                                                                                          | [4] |

### SECTION B: ANSWER ANY 3 QUESTIONS

B2. (a) Let  $X = \mathbb{R}$  (the reals) with metric  $\rho_0$  defined by

$$\rho_0(x,y) = \begin{cases} 5, & x \neq y \\ 0, & x = y, \end{cases}$$

for arbitrary  $x, y \in \mathbb{R}$ . Describe the open balls:

(i) 
$$B_6(-5)$$
 (ii)  $B_{5.01}(-2)$  (iii)  $B_2(3)$ .

[3,3,3]

(b) If X is any nonempty set, and  $\rho: X \times X \to \mathbb{R}^+$  is a usual metric on X defined the function  $d: X \times X \to \mathbb{R}^+$  by

$$d(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}$$

Prove that d(x, y) is a metric on X. where  $\rho(x, y) = |x - y|$ .

[11]

(a) State the Banach contraction mapping principle.

[6]

(b) Let  $X = [4, \infty)$  with the usual metric for  $\mathbb{R}$ , and let  $f:[4,\infty)\to\mathbb{R}$  be defined by

$$f(x) = \frac{1}{2}\left(x + \frac{9}{x}\right) \quad \forall \ x \in [4, \infty).$$

Prove that

i. f is a contraction mapping on X.

[8]

ii. What is the unique fixed point of f.

[6]

(a) Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be defined by  $f(x,y) = 3x^2 + 7y^2 - 3x + 2y - 6$ . prove [10]that f is continuous at (-1,3).

(b) Let  $X = \mathbb{R}^2$  with the usual metric and  $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}^2$  is given by  $x_n = \left(\frac{2n}{1+2n}, \frac{2}{1+n}\right)$  determine whether  $\{x_n\}_{n=1}^{\infty}$  converges or not. If it converges, find the limit and prove that the sequence indeed converges to the limit points.

[10]

- B5. (a) Let X be a nonempty set and suppose that (X, d) and  $(X, \rho)$  are metric spaces. When do we say that d and  $\rho$  are equivalent? [3]
  - (b) In  $\mathbb{R}^n$  show that the metric  $d_2(x,y) := \sqrt{\sum_{i=1}^n |x_i y_i|^2}$  and  $d_{\infty}(x,y) : \max_{i \leq i \leq n} |x_i y_i|$ , are equivalent, where  $x := (x_1, x_2, ..., x_n)$  and  $y := (y_1, y_2, ..., y_n)$ . [7]
  - (c) State the five consequences when a function  $f:[a,b]\to\mathbb{R}$  is continuous. [10]
- **B6.** (a) Prove that every subset of a metric space  $(X, \rho)$  is closed in X if and only if its complement is open in X. [7]
  - (b) Let  $(X, \rho_X)$  be a metric space and let  $(Y, \rho_Y)$  be a subspace of X. Let A be a subset of Y. Prove that A is closed in Y if and only if there exists a set F which is closed in X such that  $A = Y \cap F$ . [10]
  - (c) Let  $X = \mathbb{R}$  (the reals) with the usual metric, and let Y = [1, 2] be a subspace of X. Let  $A = [1, \frac{3}{2})$ . Show that  $A = [1, \frac{3}{2})$  is not open in  $X = \mathbb{R}$  (with the usual metric).

END OF EXAMINATION