University of Eswatini

MAIN EXAMINATION, 2019/2020

B.Sc IV, BASS IV

Title of Paper : Abstract Algebra II

Course Number : M423/MAT423

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions in TWO sections.

- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

COURSE NAME AND CODE: M423/MAT423 ABSTRACT ALGEBRA II

A1 (a) Let R be a ring. Define the following terms in R

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

i. a unity	[2 marks]
ii. a zero divisor	[2 marks]
iii. the characteristic	[2 marks]
iv. Idempotent element of R	[2 marks]
\mathbf{v} . nilpotent element of R	[2 marks]
(b) Consider $(R[x], +, \circ)$, where \circ is a composition of polynomial.	
By counterexample show that $(R[x], +, \circ)$ is not a ring.	
(Hint: with $f(x) = x^2$, $g(x) = x$ and $h(x) = x$, check distributive law).	[5 marks]

(c) Compute the evaluation homomorphism $\varphi_3[(x^4+2x)(x^3-3x^2+3)]$ in \mathbb{Z}_6 . [5 marks]

(d) Let R be a ring. What is meant by

i. Subring of R [3 marks] ii. an ideal of R [3 marks] iii. a ring homomorphism $\beta:R\to R$ [3 marks]

(e) Show that \mathbb{Z}_6 is not an integral domain. [5 marks]

(f) If 1 - 2x, $1 + 2x^2 \in \mathbb{Z}_4[x]$. Evaluate $(1 - 2x)(1 + 2x^2)$ in $\mathbb{Z}_4[x]$. [6 marks]

SECTION B [60 Marks]: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Let S be the subset of all 2×2 real matrices $M_2(\mathbb{R})$ defined by

$$S = \Big\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}: \ a,b,c,d \in \mathbb{R}, \ a+c = b+d \Big\}.$$

Show that S is a subring of $M_2(\mathbb{R})$.

[10 marks]

(b) Let R be an integral domain. If $f, g \in R[x]$ are both nonzero, then $fg \neq 0$. Prove that deg(fg) = deg(f) + deg(g).

[6 marks]

(c) Show that $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ is an idempotent element in $M_2(\mathbb{R})$.

[4 marks]

QUESTION B3 [20 Marks]

B3 (a) For any prime number p. Prove that \mathbb{Z}_p is a field.

[8 marks]

(b) Let $S = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ be a subset of $M_2(\mathbb{Z})$. Prove that S is an additive subgroup of $M_2(\mathbb{Z})$ and also S is a right-ideal but not a left ideal.

[12 marks]

QUESTION B4 [20 Marks]

B4 (a) Prove that every field is an integral domain.

[7 marks]

(b) Let R be a commutative ring with char(R) = 2. Define $\phi(x) = x^2$, for all $x \in \mathbb{R}$. Show that ϕ is a ring homomorphism.

[6 marks]

(c) By Fermate's Little Theorem, evaluate

$$2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \mod 7.$$

[7 marks]

QUESTION B5 [20 Marks]

B5 (a) Let I be an ideal of R and $a, b, c, d \in R$. If $a \equiv b \pmod{I}$ and $c \equiv d \pmod{I}$. Prove that $a + c \equiv b + d \pmod{I}$.

[4 marks]

(b) Find the quotient q(x) and the remainder r(x) when the polynomial $f(x) = x^3 + 2$ is divided by 2x + 2 in $\mathbb{Z}_3[x]$.

[7 marks]

(c) State Eisentein's criterion for irreducibility.

[4 marks]

(d) Use Eisentein's criterion to show that $f(x) = 3x^4 - 10x^2 - 5x + 15$ is irreducible over Q.

[5 marks]

QUESTION B6 [20 Marks]

B6 (a) Prove that any prime element of an integral domain is irreducible.

[6 marks]

(b) Define Unique factorisation domain (UFD).

[5 marks]

(c) Find $d = \gcd(a, b)$ and x, y such that d = ax + by if a = 32 + 9i and b = 4 + 11i in $\mathbb{Z}[i]$.

[9 marks]