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This paper consists of SIX (6) questions in TWO sections.
Section A is COMPULSORY and is worth 40%. Answer ALL questions
in this section.

Section B consists of FIVE questions, each worth 20%. Answer ANY THREE
(3) questions in this section.

. Show all your working.

Start each new major question (Al, B2 — B6) on a new page and clearly
indicate the question number at the top of the page.
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SECTION A [{0 Marks): ANSWER ALL QUESTIONS

QUESTION A1l [40 Marks]

Al (a) Let R be a ring. Define the following terms in R

i. a unity [2 marks]
ii. a zero divisor [2 marks]
iii. the characteristic [2 marks]
iv. Idempotent element of R [2 marks]
v. nilpotent element of K [2 marks]

(b} Consider (R[z],+, ), where o is a composition of polynomial.
By counterexample show that (R[z],+, o) is not a ring.
(Hint: with f(z) = 2%, g{z) = © and h(z) = x, check distributive law). |5 marks|

(¢c) Compute the evaluation homomorphism i;[(z* 4 2z)(2* — 3z + 3)] in Zs.  [5 marks]
(d) Let R be a ring. What is meant by

i. Subring of R I3 marks|

ii. an ideal of R [3 marks]

iii. a ring homomorphism 8 : R - R [3 marks]

{e) Show that Zg is not an integral domain. [5 marks]

(f) If 1 — 23, 1+ 227 € Zy[z]. Evaluate (1 — 2z}{1 + 22?) in Z4[z]. [6 marks]
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SECTION B [60 Marks]: ANSWER ANY THREFE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Let S be the subset of all 2 x 2 real matrices M2(R) defined by
S = { [a b} Ca,be,dER, a+c=b+d}.
c

d
Show that S is a subring of 14,(R). [10 marks|
(b) Let R be an integral domain. If f, g € R|z| are both nonzero, then fg # 0.
Prove that deg(fg) = deg(f) + deg(g). I6 marks]|
{c) Show that Gﬁ %3) is an idempotent element in Mz(R)}. [4 marks]

QUESTION B3 [20 Marks]

B3 (a) For any prime number p. Prove that Z, is a field. [8 marks]
(b} Let S = { (8 8) :oa,be %} be a subset of My(Z). Prove that § is an additive
subgroup of M,(Z) and also S is a right-ideal but not a
left ideal. [12 marks]|

QUESTION B4 [20 Marks)

B4 (a) Prove that every field is an integral domain. [7 marks]
(b} Let R be a commutative ring with c¢har(R) = 2. Define ¢(z) = z2, for all
x € R. Show that ¢ is a ring homomorphism. {6 marksj

(¢) By Fermate's Little Theorem, evaluate
2% 3% 44" + 5 + 6% mod 7.

[7 marks]
QUESTION B5 [20 Muarks]
B5 (a} Let I be an ideal of R and a,b,¢c,d € R. If a = b( mod I) and
c¢=d( mod I). Prove that a + ¢ = b+ d( mod I). [4 marks]
(b) Find the quotient ¢{z) and the remainder r(z) when the polynomial
f(z) = 2? + 2 is divided by 2z + 2 in Zs|z]. (7 marks]
(c) State Eisentein’s criterion for irreducibility. [4 marks]
(d) Use Eisentein’s criterion to show that f(z) = 3z? — 10z? — 5z + 15
is irreducible over €. [5 marks]
QUESTION B6 [20 Marks)
B6 (a)} Prove that any prime element of an integral domain is irreducible. [6 marks]
(b) Define Unique factorisation domain (UFD). [5 marks]
{c) Find d = ged(a, b) and z,y such that d = az + by if
a =32+ 9 and b =4 + 117 in Z[4]. [9 marks]

END OF EXAMINATION




